Diabetic nephropathy is the most common cause of end-stage renal disease (ESRD) in the U.S., accounting for approximately 45% of new cases with costs projected to reach $12 billion each year by 2010. Current state-of-care only involves control of hyperglycemia until microalbuminuria develops which could take any where between 5 to 12 years after detection of hyperglycemia. While a clear understanding of the pathophysiology of diabetic nephropathy is not yet complete, significant progress has been made over the last decade or so and novel concepts are being put forward. Renal hypoxia which has been accepted widely to play a major role in ischemic nephropathy is attracting increasing interest in diabetes. There are at least two major reasons for development of chronic renal hypoxia in diabetes: one is due to hyperfiltration resulting in increased oxygen consumption to support enhanced sodium reabsorption, and the other due to oxidative stress which ultimately causes reduced nitric oxide availability. In order to better understand the origins and degree of hypoxia and develop methods to reverse it, there is a need for non-invasive technique to measure/monitor intra-renal oxygenation both in animal models and in humans. Blood oxygenation level dependent (BOLD) MRI technique as applied to intra-renal oxygenation has been shown to be sensitive and efficacious in evaluating renal hypoxia both in rat and human kidneys. Currently there is no other known technique that can be used to monitor renal hypoxia in human kidneys. Further, it has been established that in combination with suitable pharmacological maneuver, BOLD MRI facilitates demonstration of compromised endogenous protective mechanisms such as prostglandins and nitric oxide. Based on this background, this proposal extends the present findings in healthy and hypertensive kidneys using BOLD MRI to evaluate intra-renal oxygenation in diabetes. Using a diabetic rat kidney model, BOLD MRI and GFR measurements will be validated against invasive microprobe and inulin clearance measurements. Also for the first time the technique will be extended to human subjects at different stages of disease progression. Pilot data will also be obtained to follow longitudinal progression. Successful outcome will mean that we will have a non-invasive means to monitor intra-renal oxygenation to follow longitudinal changes during disease progression in diabetic nephropathy, and novel treatments during pre-clinical and clinical trials. ? ? ?

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK073973-02
Application #
7455313
Study Section
Medical Imaging Study Section (MEDI)
Program Officer
Flessner, Michael Francis
Project Start
2007-07-01
Project End
2010-06-30
Budget Start
2008-07-01
Budget End
2009-06-30
Support Year
2
Fiscal Year
2008
Total Cost
$224,175
Indirect Cost
Name
Northshore University Healthsystem
Department
Type
DUNS #
069490621
City
Evanston
State
IL
Country
United States
Zip Code
60201
Sauer, David B; Karpowich, Nathan K; Song, Jin Mei et al. (2015) Rapid Bioinformatic Identification of Thermostabilizing Mutations. Biophys J 109:1420-8
Thacker, Jon M; Li, Lu-Ping; Li, Wei et al. (2015) Renal Blood Oxygenation Level-Dependent Magnetic Resonance Imaging: A Sensitive and Objective Analysis. Invest Radiol 50:821-7
Karpowich, Nathan K; Song, Jin Mei; Cocco, Nicolette et al. (2015) ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism. Nat Struct Mol Biol 22:565-71
Mulligan, Christopher; Fitzgerald, Gabriel A; Wang, Da-Neng et al. (2014) Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. J Gen Physiol 143:745-59
Wang, Da-Neng; Stieglitz, Heather; Marden, Jennifer et al. (2013) Benjamin Franklin, Philadelphia's favorite son, was a membrane biophysicist. Biophys J 104:287-91
Waight, Andrew B; Czyzewski, Bryan K; Wang, Da-Neng (2013) Ion selectivity and gating mechanisms of FNT channels. Curr Opin Struct Biol 23:499-506
Karpowich, Nathan K; Wang, Da-Neng (2013) Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci U S A 110:2534-9
Mancusso, Romina; Gregorio, G Glenn; Liu, Qun et al. (2012) Structure and mechanism of a bacterial sodium-dependent dicarboxylate transporter. Nature 491:622-6
Czyzewski, Bryan K; Wang, Da-Neng (2012) Identification and characterization of a bacterial hydrosulphide ion channel. Nature 483:494-7
Mancusso, Romina; Karpowich, Nathan K; Czyzewski, Bryan K et al. (2011) Simple screening method for improving membrane protein thermostability. Methods 55:324-9

Showing the most recent 10 out of 12 publications