The liver and kidney excrete from the body a wide array of positively charged organic molecules of physiological, pharmacological and toxicological significance. Carrier-mediated secretion of these """"""""organic cations"""""""" (OCs), particularly by the kidney, has a profound influence on the pharmacokinetics of these compounds and, importantly, OC secretion is the site of many clinically significant drug-drug interactions. The active and rate-limiting step in OC secretion involves the carrier-mediated exit of accumulated OCs across the luminal membrane of renal and hepatic epithelia. The molecular identify of this process involves the newly identified Multidrug And Toxin Extrusion proteins, MATE1 and MATE2-K. Although now clearly understood to play a significant role in OC secretion, virtually nothing is known about the molecular determinants of substrate interaction with these transporters. In this revised proposal, we take advantage of the recent solution of the x- ray structure of a prototypic member of the MATE family of transport protein (NorM). We have used the NorM structure to develop a homology model of human MATE1 and, in this proposal, we outline two sets experiments designed to develop a predictive model of drug interaction with MATE transporters.
In Aim 1, we take a ligand-based approach to develop 3D-QSAR/pharmacophore models of substrate/inhibitor interaction with MATE1 and MATE2-K. These data will be interpreted in the context of parallel studies on the integrated activity of these transporters in epithelial models of renal secretion (which, in turn, will be interpreted in the context of studies on the differential distribution of these transporters in human kidney).
Aim 2 will employ a target-based approach, using site-directed studies to probe the topology and surface accessibility of MATE1, thereby testing predictions arising from our homology model, and establishing a database designed to probe the functional structure of the protein as determined in a parallel effort to solve the x-ray structure of human MATE1.
Aim 2 will also study the substrate translocation pathway of MATE1 in studies that apply (i) proteomic methods to identify peptides and amino acid residues that specifically interact with a photoactivatable probe of the OC/H+ exchanger;and (ii) apply computational methods (steered molecular dynamics) to identify amino acid residues that influence substrate translocation. These studies will play a critical role in establishing models that accurately predict and, ideally, preempt unwanted interactions of cationic drugs in both the kidney and liver.

Public Health Relevance

The kidney and liver actively secrete many drugs from the body, and unwanted drug-drug interactions at the sites of secretion in these organs are a source of substantial morbidity and mortality. The rate-limiting step in the secretion of cationic drugs by the human liver and kidney involves the mediated exchange of organic cations (OCs) for hydrogen ion (H+), a transport process that, until recently, was undescribed at the molecular level. Recent work identified two transporters, MATE1 and MATE2-K, as these OC/H+ exchangers. Despite their biological importance, and their clinical significance in humans, virtually nothing is known about the relationship of structure and function for these transporters. In this proposal, we outline experiments that will establish the 3D structure of human MATE transporters, identify specific sites within these proteins that influence drug binding, and develop predictive models of substrate/inhibitor interaction with MATE transporters. The results of these studies will help predict and, ideally, preempt unwanted drug-drug interactions in both the kidney and liver, and can be expected to assist in development of programs of structure-based rational drug design.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Xenobiotic and Nutrient Disposition and Action Study Section (XNDA)
Program Officer
Ketchum, Christian J
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Arizona
Schools of Medicine
United States
Zip Code
Doshi, Rupak; McGrath, Aaron P; Piñeros, Miguel et al. (2017) Functional characterization and discovery of modulators of SbMATE, the agronomically important aluminium tolerance transporter from Sorghum bicolor. Sci Rep 7:17996
Martínez-Guerrero, Lucy J; Morales, Mark; Ekins, Sean et al. (2016) Lack of Influence of Substrate on Ligand Interaction with the Human Multidrug and Toxin Extruder, MATE1. Mol Pharmacol 90:254-64
Martínez-Guerrero, L J; Evans, K K; Dantzler, W H et al. (2016) The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules. Am J Physiol Renal Physiol 310:F57-67
Shibayama, Takahiro; Morales, Mark; Zhang, Xiaohong et al. (2015) Unstirred Water Layers and the Kinetics of Organic Cation Transport. Pharm Res 32:2937-49
Ekins, Sean; Clark, Alex M; Wright, Stephen H (2015) Making Transporter Models for Drug-Drug Interaction Prediction Mobile. Drug Metab Dispos 43:1642-5
Pelis, Ryan M; Wright, Stephen H (2014) SLC22, SLC44, and SLC47 transporters--organic anion and cation transporters: molecular and cellular properties. Curr Top Membr 73:233-61
Martínez-Guerrero, Lucy J; Wright, Stephen H (2013) Substrate-dependent inhibition of human MATE1 by cationic ionic liquids. J Pharmacol Exp Ther 346:495-503
Astorga, Bethzaida; Ekins, Sean; Morales, Mark et al. (2012) Molecular determinants of ligand selectivity for the human multidrug and toxin extruder proteins MATE1 and MATE2-K. J Pharmacol Exp Ther 341:743-55
Zhang, Xiaohong; He, Xiao; Baker, Joseph et al. (2012) Twelve transmembrane helices form the functional core of mammalian MATE1 (multidrug and toxin extruder 1) protein. J Biol Chem 287:27971-82
Ekins, S; Polli, J E; Swaan, P W et al. (2012) Computational modeling to accelerate the identification of substrates and inhibitors for transporters that affect drug disposition. Clin Pharmacol Ther 92:661-5

Showing the most recent 10 out of 15 publications