Integrins are a broad family of cell surface adhesion and signaling molecules which link the extracellular matrix (ECM) to the cytoskeleton of the cell. Integrins bind directly to ECM ligands on the extracellular surface and are linked to the actin cytoskeleton through multiple adaptor proteins and receptor tyrosine kinases on the plasma membrane. They play critical roles in all cell types and regulate cell migration, differentiation, proliferation and apoptosis. They are also force sensors and transduce mechanical stimuli into biochemical signals. This project explores the role of integrins and integrin-signaling pathways within the epithelium lining the bladder - the urothelium - where almost nothing is known of their function. Our primary hypothesis is that integrins represent the initial upstream mechanical sensor in the bladder and detect bladder filling through membrane stretch. In order to investigate this hypothesis we have created a conditional knockout of 21-integrin within the urothelium (21-cKO). Loss of 21-integrin knocks out all integrins within the umbrella and intermediate cells making the superficial layers of the epithelium integrin-null. Preliminary data indicates that the bladders of these mice release significantly less ATP into the lumen upon stretch, hyperactivate ion conductances upon stretch and exhibit detrusor hyperreflexia and detrusor-sphincter dyssynergia when measured by cystometry. These findings are strongly indicative of an obstructed bladder phenotype possibly due to inadequate urethral sphincter relaxation. Taken together these symptoms indicate a mechanical signaling deficit originating in the urothelium which leads to an obstructed bladder phenotype. An understanding of the signaling mechanisms employed by the bladder as it fills is essential in understanding many different bladder disorders, from overactive bladder to interstitial cystitis.
Specific aim 1 of our study will examine the repertoire of integrin binding partners in umbrella cells in vivo and will explore the mechanisms by which integrins regulate ATP secretion. ATP has been show to be an extremely important autocrine and paracrine mediator in the bladder and signals through purinergic receptors on both the luminal surface and in suburothelial layers e.g. on afferent nerve fibers.
Specific aim 2 will investigate how integrins interact with and regulate mechanosensory ion channels within the urothelium using selective inhibitors and ion substitution protocols to determine which ion channels regulated by integrins. The role of ion fluxes in regulating membrane trafficking and ATP release will also be studied using (i) capacitance changes in response to stretch to monitor membrane trafficking;and (ii) short circuit currents on bladders mounted in Ussing chambers.
Specific aim 3 will use cystometry in the presence of various pharmacological modulators of ion channels and receptors to investigate at the molecular level how integrins regulate filling and voiding behavior.

Public Health Relevance

There are large numbers of people who for many different reasons - spinal cord injury, diabetes, cystitis - suffer from disorders of the bladder which can broadly be characterized as overactive bladder. They suffer greatly from embarrassing and debilitating symptoms of incontinence, urgency, pain and frequency which profoundly affect quality of life. This project will provide new knowledge of the mechanisms by which the bladder senses filling and responds and in so doing may suggest new therapeutic options for bladder disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK083299-03
Application #
8239878
Study Section
Urologic and Kidney Development and Genitourinary Diseases Study Section (UKGD)
Program Officer
Mullins, Christopher V
Project Start
2010-03-15
Project End
2015-02-28
Budget Start
2012-03-01
Budget End
2013-02-28
Support Year
3
Fiscal Year
2012
Total Cost
$370,359
Indirect Cost
$157,509
Name
Beth Israel Deaconess Medical Center
Department
Type
DUNS #
071723621
City
Boston
State
MA
Country
United States
Zip Code
02215
Kim, Alexandra K; Hill, Warren G (2017) Effect of filling rate on cystometric parameters in young and middle aged mice. Bladder (San Franc) 4:
Ackert-Bicknell, Cheryl L; Anderson, Laura C; Sheehan, Susan et al. (2015) Aging Research Using Mouse Models. Curr Protoc Mouse Biol 5:95-133
Yu, Weiqun; Ackert-Bicknell, Cheryl; Larigakis, John D et al. (2014) Spontaneous voiding by mice reveals strain-specific lower urinary tract function to be a quantitative genetic trait. Am J Physiol Renal Physiol 306:F1296-307
Yu, Weiqun; Sun, Xiaofeng; Robson, Simon C et al. (2014) ADP-induced bladder contractility is mediated by P2Y12 receptor and temporally regulated by ectonucleotidases and adenosine signaling. FASEB J 28:5288-98
Yu, Weiqun; Sun, Xiaofeng; Robson, Simon C et al. (2013) Extracellular UDP enhances P2X-mediated bladder smooth muscle contractility via P2Y(6) activation of the phospholipase C/inositol trisphosphate pathway. FASEB J 27:1895-903
Kanasaki, Keizo; Yu, Weiqun; von Bodungen, Maximilian et al. (2013) Loss of ?1-integrin from urothelium results in overactive bladder and incontinence in mice: a mechanosensory rather than structural phenotype. FASEB J 27:1950-61
Yu, Weiqun; Hill, Warren G (2013) Lack of specificity shown by P2Y6 receptor antibodies. Naunyn Schmiedebergs Arch Pharmacol 386:885-91
Yu, Weiqun; Zeidel, Mark L; Hill, Warren G (2012) Cellular expression profile for interstitial cells of cajal in bladder - a cell often misidentified as myocyte or myofibroblast. PLoS One 7:e48897
Zocher, Florian; Zeidel, Mark L; Missner, Andreas et al. (2012) Uroplakins do not restrict CO2 transport through urothelium. J Biol Chem 287:11011-7
Yu, Weiqun; Robson, Simon C; Hill, Warren G (2011) Expression and distribution of ectonucleotidases in mouse urinary bladder. PLoS One 6:e18704

Showing the most recent 10 out of 12 publications