Infiltration of leukocytes potentiates peritonitis, renal ischemia-reperfusion injury, a major cause of acute renal failure, and other acute inflammatory conditions. Likewise, leukocyte infiltration is a key initiating step during chronic inflammation in lupus nephritis, resulting in progressive deterioration of kidney function, and in various other autoimmune diseases. Studies in experimental models have shown that modulating leukocyte recruitment is beneficial and decreases the severity or the pathogenesis of such diseases in animals. The leukocytic 2 integrin CD11b/CD18 (a.k.a. Mac-1, aMb2) is central to various functions of these cells. Conventional approaches using antibodies and ligand mimics to block binding of CD11b/CD18 to its ligands (anti-adhesion therapy), which showed marked reduction in leukocyte infiltration in animal models, failed in treating inflammatory/autoimmune diseases in several clinical trials. Here, we propose an innovative approach for treating inflammatory disease by activating, not blocking, integrin CD11b/CD18 using small molecules. We propose that CD11b/CD18 activation with small molecules would prevent leukocyte migration to the site of inflammation, a premise that is based on published literature going back 15 years that also provides in vivo support for this hypothesis. However, our approach is novel and is distinguished by our ability to activate integrins using novel small molecule agonists of CD11b/CD18 that can be systemically delivered and are easy to modify and improve upon in the future. The preliminary data presented in this proposal suggests that integrin-specific small molecule mediated activation of CD11b/CD18 reduces leukocyte infiltration and inflammation and can be an effective, pharamacologically useful methodology to treat a variety of inflammatory and autoimmune diseases. We have also made an unexpected discovery that activation of CD11b/CD18 by these compounds suppresses secretion of pro-inflammatory cytokines and other factors, although the nature of intracellular pathways modulating this anti-inflammatory effect is currently not known. This suggests that the novel CD11b/CD18 agonists represent a new class of anti-inflammatory agents that reduce inflammatory injury by decreasing leukocyte migration and by directly suppressing the proinflammatory function of leukocytes. The overall goal of this proposal is to fully characterize the molecular and the cellular basis for the function of our newly discovered CD11b/CD18 agonists in vitro and in vivo and to explore their therapeutic potential in vivo. Our proposed studies would open up new avenues for the development of therapeutically useful anti-inflammatory agents and strategies in the future, including ones that lead to progressive deterioration of kidney function and acute renal failure.

Public Health Relevance

The studies proposed will test the effectiveness of our newly discovered compounds as novel anti- inflammatory agents using various models of human kidney disease. We believe that the proposed studies will also identify novel mechanisms for treating inflammatory diseases in humans.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK084195-06
Application #
8900274
Study Section
Innate Immunity and Inflammation Study Section (III)
Program Officer
Abbott, Kevin C
Project Start
2011-09-20
Project End
2016-08-31
Budget Start
2015-09-01
Budget End
2016-08-31
Support Year
6
Fiscal Year
2015
Total Cost
$229,500
Indirect Cost
$79,500
Name
Rush University Medical Center
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068610245
City
Chicago
State
IL
Country
United States
Zip Code
60612
Khan, Samia Q; Khan, Imran; Gupta, Vineet (2018) CD11b Activity Modulates Pathogenesis of Lupus Nephritis. Front Med (Lausanne) 5:52
Dickinson, Catherine M; LeBlanc, Brian W; Edhi, Muhammad M et al. (2018) Leukadherin-1 ameliorates endothelial barrier damage mediated by neutrophils from critically ill patients. J Intensive Care 6:19
Lee, Ha Won; Khan, Samia Q; Khaliqdina, Shehryar et al. (2017) Absence of miR-146a in Podocytes Increases Risk of Diabetic Glomerulopathy via Up-regulation of ErbB4 and Notch-1. J Biol Chem 292:732-747
Johnson, Courtney M; O'Brien, Xian M; Byrd, Angel S et al. (2017) Integrin Cross-Talk Regulates the Human Neutrophil Response to Fungal ?-Glucan in the Context of the Extracellular Matrix: A Prominent Role for VLA3 in the Antifungal Response. J Immunol 198:318-334
Reiser, Jochen; Lee, Ha Won; Gupta, Vineet et al. (2017) A High-Content Screening Technology for Quantitatively Studying Podocyte Dynamics. Adv Chronic Kidney Dis 24:183-188
Hahm, Eunsil; Wei, Changli; Fernandez, Isabel et al. (2017) Bone marrow-derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med 23:100-106
Faridi, Mohd Hafeez; Khan, Samia Q; Zhao, Wenpu et al. (2017) CD11b activation suppresses TLR-dependent inflammation and autoimmunity in systemic lupus erythematosus. J Clin Invest 127:1271-1283
Lee, Ha Won; Khan, Samia Q; Faridi, Mohd Hafeez et al. (2015) A Podocyte-Based Automated Screening Assay Identifies Protective Small Molecules. J Am Soc Nephrol 26:2741-52
Jagarapu, Jawahar; Kelchtermans, Jelte; Rong, Min et al. (2015) Efficacy of Leukadherin-1 in the Prevention of Hyperoxia-Induced Lung Injury in Neonatal Rats. Am J Respir Cell Mol Biol 53:793-801
Rodriguez-Menocal, Luis; Faridi, Mohd Hafeez; Martinez, Laisel et al. (2014) Macrophage-derived IL-18 and increased fibrinogen deposition are age-related inflammatory signatures of vascular remodeling. Am J Physiol Heart Circ Physiol 306:H641-53

Showing the most recent 10 out of 17 publications