Exercise or physical activity has long been reported to play a major role in the control of body weight. A number of clinical studies have shown that whereas physical inactivity contributes to the development of obesity, exercise improves weight loss and, added to dietary control, becomes a key factor for success in long- term weight maintenance in overweight and obese patients. Recent work with rodent obesity models has shown that exercise affects energy balance not only by increasing energy expenditure, but also by altering appetite and reducing food intake. Despite these demonstrated effects of exercise, how exercise affects food intake and body weight remains poor understood. The long-term goal of this project is to identify the neural mechanisms underlying the effects of exercise on energy balance. The hypothalamus plays a central role in maintaining energy homeostasis. To identify hypothalamic factors that mediate exercise-induced alterations in food intake and body weight, we have examined hypothalamic gene expression in response to running wheel activity using microarray analyses. These analyses have shown that transthyretin (TTR) gene expression is induced in the dorsomedial hypothalamus (DMH) of exercised rats. We have also shown that central injection of TTR inhibits food intake. Based on these data and the prior observation that TTR knockout results in increased neuropeptide Y levels in mouse peripheral and central nerve systems, we hypothesize that brain TTR may be a major contributing factor to the effects of exercise on food intake and energy balance, and together with other peptides, plays an important role in energy homeostasis. We propose two specific aims to test this hypothesis.
Specific Aim 1 will identify the role of brain TTR in the control of energy balance using multiple approaches at neurochemical, pharmacological, genetic and protein levels.
Specific Aim 2 will ascertain the target sites and mechanisms of actions of brain TTR in the control of energy balance by gene expression determination and proteomic analysis. Overall, the findings from this proposal will not only advances our understanding of the neurobiological impact of exercise on energy balance, but also provide a potential target for combating obesity.

Public Health Relevance

This proposed project is aimed at identifying the neural mechanisms underlying the effects of exercise on energy balance. Such identification will provide a potential target for the prevention and treatment of obesity.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Neurobiology of Motivated Behavior Study Section (NMB)
Program Officer
Hyde, James F
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Johns Hopkins University
Schools of Medicine
United States
Zip Code
Zhang, Ni; Yang, Liang; Guo, Lanting et al. (2018) Activation of Dorsomedial Hypothalamic Neurons Promotes Physical Activity and Decreases Food Intake and Body Weight in Zucker Fatty Rats. Front Mol Neurosci 11:179
Kim, Yonwook J; Bi, Sheng (2016) Knockdown of neuropeptide Y in the dorsomedial hypothalamus reverses high-fat diet-induced obesity and impaired glucose tolerance in rats. Am J Physiol Regul Integr Comp Physiol 310:R134-42
Zheng, Fenping; Kim, Yonwook J; Moran, Timothy H et al. (2016) Central transthyretin acts to decrease food intake and body weight. Sci Rep 6:24238
Bi, Sheng; Moran, Timothy H (2016) Obesity in the Otsuka Long Evans Tokushima Fatty Rat: Mechanisms and Discoveries. Front Nutr 3:21
Zhang, Wei; Bi, Sheng (2015) Hypothalamic Regulation of Brown Adipose Tissue Thermogenesis and Energy Homeostasis. Front Endocrinol (Lausanne) 6:136
Bi, Sheng (2014) Stress prompts brown fat into combustion. Cell Metab 20:205-7
Zheng, Fenping; Kim, Yonwook J; Chao, Pei-Ting et al. (2013) Overexpression of neuropeptide Y in the dorsomedial hypothalamus causes hyperphagia and obesity in rats. Obesity (Silver Spring) 21:1086-92
Bi, Sheng (2013) Dorsomedial hypothalamic NPY modulation of adiposity and thermogenesis. Physiol Behav 121:56-60
Bi, Sheng; Li, Lin (2013) Browning of white adipose tissue: role of hypothalamic signaling. Ann N Y Acad Sci 1302:30-34
Bi, Sheng; Kim, Yonwook J; Zheng, Fenping (2012) Dorsomedial hypothalamic NPY and energy balance control. Neuropeptides 46:309-14

Showing the most recent 10 out of 11 publications