We identified motor protein Myo1c as a novel component of slit diaphragm that interacts with Nephrin and Neph1 and regulates their movement. To study the in vivo function of Myo1c, we generated Myo1c floxed mice that were used to construct homozygous null and podocyte-specific Myo1c null mice. While Myo1c homozygous null mice were reported to die prenatally, complete Myo1c deletion in 12 week old mice increased their sensitivity to adriamycin-induced proteinuria (on a C57BL/6J background), which is in agreement with our zebrafish studies. Interestingly, the analysis of podocyte specific Myo1c knockout mouse showed no proteinuria or functional abnormality when aged to 8 months. However, when bred to an adriamycin-sensitive background, these mice were resistant to adriamycin-induced glomerulopathy; they did not develop proteinuria as compared to the control mice suggesting multiple functions for Myo1c. Although surprising, these results are consistent with loss of proteins in podocytes that are involved in signaling and trafficking such as Rac1 and Crk. Podocytes response to injury is commonly assessed through increased phosphorylation of Nephrin and Neph1 that initiates their redistribution and the assembly of an intracellular signaling cascade leading to podocyte effacement. Impairment of these events may attenuate podocytes ability to respond to injury thus inducing protection. Indeed, our recent study demonstrated that inhibiting Neph1 signaling protected podocytes from injury. Since Myo1c has a tethering function that associates its cargo proteins with membranes and actin, we hypothesized that Myo1c participates in a mechanism that regulates movement of these proteins at the membrane that is critical for directing the assembly of a signaling complex by Nephrin and Neph1 and initiating intracellular signaling and trafficking events. Indeed, loss of Myo1c binding attenuated the dynamic movement of Neph1 at the membrane as demonstrated using live FRAP analysis. Furthermore, we treated cultured podocytes with a Myo1c specific inhibitor pentachloropseudilin (PCIP) that arrested membrane and intracellular vesicles movements suggesting the involvement of Myo1c in actin dependent cellular events that are critical for generating cellular response to injury. This further suggested that these cells will hve impaired injury response. Indeed, these cells resisted injury by protamine sulphate (PS) as measured by actin cytoskeleton reorganization. In the Specific Aim 1, we will investigate the hypothesis that Myo1c due to its membrane and actin binding functions, participates in generating an appropriate injury response by podocytes. This involves regulating injury-induced redistribution of Nephrin and Neph1 proteins to intracellular compartments and the assembly of signaling complexes that drives their intracellular signaling and trafficking. In the second Aim, we will investigate how Myo1c depletion at various stages of mouse development affects glomerular function. In addition, we will investigate if Myo1c is a therapeutic target by determining whether podocyte-specific deletion of Myo1c attenuates the disease phenotype in various acute and chronic glomerular injury models.

Public Health Relevance

Glomerular diseases including diabetic nephropathy cause progressive loss of kidney function that leads to end stage renal disease (ESRD), which is the leading cause of renal failure worldwide. The financial and emotional burden of ESRD is rapidly approaching to enormous proportions (several billions of dollars). Due to our limited understanding of the glomerular biology, the effective therapies to treat these life threatening diseases are lacking. Our goal is to contribute towards the understanding of molecular mechanisms that govern the development and function of podocytes that are critical components of the glomerular filtration barrier, thereby providing the nephrology community with potential disease mechanisms and therapeutic targets.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK087956-10
Application #
9518837
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Maric-Bilkan, Christine
Project Start
2016-03-01
Project End
2019-05-31
Budget Start
2018-06-01
Budget End
2019-05-31
Support Year
10
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
183710748
City
Charleston
State
SC
Country
United States
Zip Code
29403
Solanki, Ashish K; Arif, Ehtesham; Morinelli, Thomas et al. (2018) A Novel CLCN5 Mutation Associated With Focal Segmental Glomerulosclerosis and Podocyte Injury. Kidney Int Rep 3:1443-1453
Lee, Ha Won; Arif, Ehtesham; Altintas, Mehmet M et al. (2018) High-content screening assay-based discovery of paullones as novel podocyte-protective agents. Am J Physiol Renal Physiol 314:F280-F292
Gupta, Prabuddha; Martin, René; Knölker, Hans-Joachim et al. (2017) Myosin-1 inhibition by PClP affects membrane shape, cortical actin distribution and lipid droplet dynamics in early Zebrafish embryos. PLoS One 12:e0180301
Velez, Juan Carlos Q; Arif, Ehtesham; Rodgers, Jessalyn et al. (2017) Deficiency of the Angiotensinase Aminopeptidase A Increases Susceptibility to Glomerular Injury. J Am Soc Nephrol 28:2119-2132
Sagar, Amin; Arif, Ehtesham; Solanki, Ashish Kumar et al. (2017) Targeting Neph1 and ZO-1 protein-protein interaction in podocytes prevents podocyte injury and preserves glomerular filtration function. Sci Rep 7:12047
Lobo, Glenn P; Fulmer, Diana; Guo, Lilong et al. (2017) The exocyst is required for photoreceptor ciliogenesis and retinal development. J Biol Chem 292:14814-14826
Arif, Ehtesham; Solanki, Ashish K; Nihalani, Deepak (2016) Adriamycin susceptibility among C57BL/6 substrains. Kidney Int 89:721-3
Arif, Ehtesham; Sharma, Pankaj; Solanki, Ashish et al. (2016) Structural Analysis of the Myo1c and Neph1 Complex Provides Insight into the Intracellular Movement of Neph1. Mol Cell Biol 36:1639-54
Spinale, Joann M; Mariani, Laura H; Kapoor, Shiv et al. (2015) A reassessment of soluble urokinase-type plasminogen activator receptor in glomerular disease. Kidney Int 87:564-74
Arif, Ehtesham; Rathore, Yogendra S; Kumari, Babita et al. (2014) Slit diaphragm protein Neph1 and its signaling: a novel therapeutic target for protection of podocytes against glomerular injury. J Biol Chem 289:9502-18

Showing the most recent 10 out of 20 publications