The epithelium of the small intestine undergoes a remarkable series of morphogenic changes during its development. The endodermally derived epithelial tube is initially comprised of a single layer of short columnar cells. Between E10.5 and E14.5, the tube increases in girth and length. In the 48 hours between E14.5 and E16.5, the epithelium is dramatically remodeled and the previously flat luminal surface is converted into villi (fingerlike projections of the epithelial surface). Since villi represent the functional absorptive unit of the intestine, a detailed understanding of the mechanisms leading to their formation is an important goal. Moreover, failure to establish proper intestinal surface area (as in idiopathic short bowel syndrome) can be life threatening. Data presented here challenge current thinking about the organization of the early intestinal epithelium and the mechanisms by which the epithelium is remodeled at E14.5. The Working Model underlying this work is that: The early intestinal epithelium (E12.5-14.5) is pseudostratified and grows via symmetrical cell divisions called g-divisions (because they increase epithelial girth and length). At E14.5, luminal surface area is extended by means of a different type of specialized cell division, called e-divisions (because they serve to expand the luminal surface). In e-divisions, new apical surface is added at the cytokinetic furrow. E-divisions therefore separate daughter cells onto different villi. After e-divisions, postmitotic cells change shape, shortening along their apical/basal axis and increasing their apical surface, as the first villi emerge. This cell reshaping rapidly converts epithelial girth to length. The fidelity of these processes requires Wnt5a and planar cell polarity signaling. None of these aspects of intestinal growth have previously been investigated. This proposal makes use of genetic mouse models, a novel intestinal explant culture system and advanced imaging techniques to mechanistically dissect the interconnected signaling and patterning events involved in these surface-generating processes.
The Specific Aims are designed to examine the morphological and functional characteristics of g-divisions (Aim 1) and e-divisions (Aim 2) and to investigate the mechanisms underlying intestinal lengthening, including the role of Wnt5a and planar cell polarity signaling (Aim 3). Using all of these data, a mathematical model will be generated to further investigate the role of such parameters as progenitor cycling time, apoptosis and cell shape change in intestinal lengthening. The outcome of these studies could have important implications for the bioengineering of fetal intestinal tissue and the treatment of short bowel syndrome in the fetus and newborn.

Public Health Relevance

The huge surface area of the intestinal epithelium is critical for its efficient function in nutrient absorption, but little is known about how this surface area is generated in the fetus. This proposal delves deeply into the morphological and molecular processes that occur in the early mouse intestine and are required for the establishment of intestinal absorptive surface and intestinal length. The work could suggest therapeutic strategies for infants diagnosed with short bowel syndrome in utero or perinatally.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-DKUS-C (03))
Program Officer
Carrington, Jill L
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Anatomy/Cell Biology
Schools of Medicine
Ann Arbor
United States
Zip Code
Wang, Sha; Cebrian, Cristina; Schnell, Santiago et al. (2018) Radial WNT5A-Guided Post-mitotic Filopodial Pathfinding Is Critical for Midgut Tube Elongation. Dev Cell 46:173-188.e3
Walton, Katherine D; Mishkind, Darcy; Riddle, Misty R et al. (2018) Blueprint for an intestinal villus: Species-specific assembly required. Wiley Interdiscip Rev Dev Biol 7:e317
Taniguchi, Kenichiro; Shao, Yue; Townshend, Ryan F et al. (2017) An apicosome initiates self-organizing morphogenesis of human pluripotent stem cells. J Cell Biol 216:3981-3990
Shao, Yue; Taniguchi, Kenichiro; Townshend, Ryan F et al. (2017) A pluripotent stem cell-based model for post-implantation human amniotic sac development. Nat Commun 8:208
Shao, Yue; Taniguchi, Kenichiro; Gurdziel, Katherine et al. (2017) Self-organized amniogenesis by human pluripotent stem cells in a biomimetic implantation-like niche. Nat Mater 16:419-425
Kumar, Namit; Srivillibhuthur, Manasa; Joshi, Shilpy et al. (2016) A YY1-dependent increase in aerobic metabolism is indispensable for intestinal organogenesis. Development 143:3711-3722
Walton, Katherine D; Freddo, Andrew M; Wang, Sha et al. (2016) Generation of intestinal surface: an absorbing tale. Development 143:2261-72
Walton, Katherine D; Whidden, Mark; Kolterud, ├ůsa et al. (2016) Villification in the mouse: Bmp signals control intestinal villus patterning. Development 143:427-36
Freddo, Andrew M; Shoffner, Suzanne K; Shao, Yue et al. (2016) Coordination of signaling and tissue mechanics during morphogenesis of murine intestinal villi: a role for mitotic cell rounding. Integr Biol (Camb) 8:918-28
Taniguchi, Kenichiro; Shao, Yue; Townshend, Ryan F et al. (2015) Lumen Formation Is an Intrinsic Property of Isolated Human Pluripotent Stem Cells. Stem Cell Reports 5:954-962

Showing the most recent 10 out of 14 publications