Genome wide association (GWA) studies have linked the G6PC2 gene to variations in fasting blood glucose (FBG) and hemoglobin A1C levels in humans, parameters that are associated with both the risk of type 2 diabetes and cardiovascular-associated mortality. The overall objective of this application is to build on the results of these GWA studies by determining the function of G6PC2. Our preliminary data show that the human G6PC2 gene is selectively expressed in pancreatic islet beta cells and that G6PC2 hydrolyzes glucose-6-phosphate (G6P). Based on these data our first hypothesis is that the glucose-6-phosphatase activity of G6PC2 opposes the action of glucokinase (GCK), which catalyses the conversion of glucose to G6P. Glycolytic flux has been shown to determine the S {0.5} of glucose-stimulated insulin secretion (GSIS) and the existing paradigm in the islet field proposes that GCK alone is the beta cell glucose sensor. The significance of our observations is that they challenge this paradigm and suggest that G6PC2 is a fundamental inhibitory component of that sensor. Instead we propose that a GCK/G6PC2 futile cycle acts as the beta cell glucose sensor determining glycolytic flux and the S{0.5} of GSIS. Additional preliminary data show that the mouse G6pc2 gene is also selectively expressed in pancreatic islet beta cells and that G6pc2 also hydrolyzes G6P. This suggests that the use of G6pc2 knockout (KO) mice represents an innovative and appropriate tool to study the function of G6PC2. Deletion of the mouse G6pc2 gene results in reduced FBG levels, consistent with the human GW A study data. But in addition we have found that deletion of the G6pc2 gene also results in exercise intolerance, characterized by hypoglycemia and inappropriately high GSIS. Based on these data our second hypothesis is that the GCK/G6PC2 futile cycle is physiologically important for the attenuation of insulin secretion during exercise. Neural inputs to the islet are activated during exercise and the existing paradigm in the islet field proposes that these inputs inhibit insulin secretion by hyperpolarizing the beta cell and also directly inhibiting the exocytotic machinery. The significance of our observations is that they challenge this paradigm and suggest that G6PC2 is a fundamental component of the machinery through which GSIS is inhibited during exercise. As with the control of FBG and hemoglobin AIC, this topic is also clinically important because exercise induced hypoglycemia is a major problem in individuals with diabetes that limits the duration and hence the beneficial effects of exercise. The goal of this proposal is to test our two hypotheses. The application is divided into two matching Specific Aims.
Aim I explores the function of G6pc2 at a molecular level whereas Aim 2 explores the physiological importance of the Gck/G6pc2 futile cycle for the attenuation of insulin secretion during exercise.

Public Health Relevance

Impaired insulin secretion that results in elevated fasting blood glucose and hemoglobin A (1C) levels in humans is associated with increased risk for the development of type 2 diabetes and cardiovascular-associated mortality. In contrast, an inability to suppress insulin secretion results in exercise induced hypoglycemia, which is a major problem in individuals with diabetes. The experiments proposed in this application aim to elucidate the function of a protein called G6PC2 that we hypothesize plays a critical role in the control of fasting blood glucose and hemoglobin A (1C) levels as well as the termination of insulin secretion during exercise.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK092589-03
Application #
8461686
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Appel, Michael C
Project Start
2011-08-23
Project End
2015-05-31
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
3
Fiscal Year
2013
Total Cost
$333,141
Indirect Cost
$119,394
Name
Vanderbilt University Medical Center
Department
Physiology
Type
Schools of Medicine
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
Syring, Kristen E; Bosma, Karin J; Oeser, James K et al. (2018) The Diabetes Susceptibility Gene SLC30A8 that Encodes the Zinc Transporter ZnT8 is a Pseudogene in Guinea Pigs Potentially Contributing to Low Guinea Pig Islet Zinc Content. J Mol Evol 86:613-617
Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D et al. (2017) Effects of G6pc2 deletion on body weight and cholesterol in mice. J Mol Endocrinol 58:127-139
Singh, Puja; Han, Eun Hee; Endrizzi, James A et al. (2017) Crystal structures reveal a new and novel FoxO1 binding site within the human glucose-6-phosphatase catalytic subunit 1 gene promoter. J Struct Biol 198:54-64
Boortz, Kayla A; Syring, Kristen E; Dai, Chunhua et al. (2016) G6PC2 Modulates Fasting Blood Glucose In Male Mice in Response to Stress. Endocrinology 157:3002-8
Syring, Kristen E; Boortz, Kayla A; Oeser, James K et al. (2016) Combined Deletion of Slc30a7 and Slc30a8 Unmasks a Critical Role for ZnT8 in Glucose-Stimulated Insulin Secretion. Endocrinology 157:4534-4541
Boortz, Kayla A; Syring, Kristen E; Pound, Lynley D et al. (2016) Functional Analysis of Mouse G6pc1 Mutations Using a Novel In Situ Assay for Glucose-6-Phosphatase Activity and the Effect of Mutations in Conserved Human G6PC1/G6PC2 Amino Acids on G6PC2 Protein Expression. PLoS One 11:e0162439
Boortz, Kayla A; Syring, Kristen E; Lee, Rebecca A et al. (2016) G6PC2 Modulates the Effects of Dexamethasone on Fasting Blood Glucose and Glucose Tolerance. Endocrinology 157:4133-4145
Wall, Martha L; Pound, Lynley D; Trenary, Irina et al. (2015) Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse pancreatic islets. Diabetes 64:2129-37
Davidson, Howard W; Wenzlau, Janet M; O'Brien, Richard M (2014) Zinc transporter 8 (ZnT8) and ? cell function. Trends Endocrinol Metab 25:415-24
Baerenwald, D A; Bonnefond, A; Bouatia-Naji, N et al. (2013) Multiple functional polymorphisms in the G6PC2 gene contribute to the association with higher fasting plasma glucose levels. Diabetologia 56:1306-16

Showing the most recent 10 out of 13 publications