In liver and adipose cells, cytosolic citrate is a major precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein. The cytosolic citrate concentration partially depends on its direct import across the plasma membrane via the Na+-dependent citrate transporter, a member of the divalent anion/Na+ symporter (DASS) family. Mutations of the transporter gene in flies (INDY) result in reduced fat storage through calorie restriction. Knockout mice of the homologous gene are both slimmer and protected from obesity and insulin resistance. Thus, its central role in fatty acid biosynthesis makes NaCT a particularly attractive target of small-molecule therapeutic agents for obesity, diabetes and cardiovascular diseases. We have recently determined the 3.2 crystal structure of a bacterial INDY homolog in its inward-facing conformation. The crystal structure allows us to propose a detailed transport mechanism for the protein, including substrate specificity, ion specificity, ion- substrate coupling and conformational changes that the protein undergoes to accomplish substrate translocation across the membrane. In the current project, we will test this transport mechanism using mutagenesis and transport assays. We will further characterize the transport mechanism of the protein by determining the structure of the outward-facing conformation of the INDY protein from bacteria and mammals. Understanding of the transport mechanism of these transporters, particularly their substrate and ion specificity, will help in the design of drugs for obesity and diabetes.
In human cells, cytosolic citrate is a major precursor for the synthesis of fatty acids, triacylglycerols, cholesterol and low-density lipoprotein, and its concentration partially depends on the direct import across the plasma membrane via the Na+-dependent citrate transporter. Mutations of the homologous gene in flies result in reduced fat storage through calorie restriction, whereas knockout mice of this gene are both slimmer and protected from obesity and insulin resistance. Understanding of the transport mechanism of these transporters, particularly their substrate and ion specificity, will help in the design of drgs for obesity and diabetes.
Karpowich, Nathan K; Song, Jinmei; Wang, Da-Neng (2016) An Aromatic Cap Seals the Substrate Binding Site in an ECF-Type S Subunit for Riboflavin. J Mol Biol 428:3118-30 |
Sauer, David B; Karpowich, Nathan K; Song, Jin Mei et al. (2015) Rapid Bioinformatic Identification of Thermostabilizing Mutations. Biophys J 109:1420-8 |
Reith, Maarten E A; Blough, Bruce E; Hong, Weimin C et al. (2015) Behavioral, biological, and chemical perspectives on atypical agents targeting the dopamine transporter. Drug Alcohol Depend 147:1-19 |
Karpowich, Nathan K; Song, Jin Mei; Cocco, Nicolette et al. (2015) ATP binding drives substrate capture in an ECF transporter by a release-and-catch mechanism. Nat Struct Mol Biol 22:565-71 |
Mulligan, Christopher; Fitzgerald, Gabriel A; Wang, Da-Neng et al. (2014) Functional characterization of a Na+-dependent dicarboxylate transporter from Vibrio cholerae. J Gen Physiol 143:745-59 |
Wang, Da-Neng; Stieglitz, Heather; Marden, Jennifer et al. (2013) Benjamin Franklin, Philadelphia's favorite son, was a membrane biophysicist. Biophys J 104:287-91 |
Reith, Maarten E A (2013) Novel structure--function information on biogenic amine transporters revealed by site-directed mutagenesis and alkylation. Neurochem Res 38:1301-2 |
Waight, Andrew B; Czyzewski, Bryan K; Wang, Da-Neng (2013) Ion selectivity and gating mechanisms of FNT channels. Curr Opin Struct Biol 23:499-506 |
Karpowich, Nathan K; Wang, Da-Neng (2013) Assembly and mechanism of a group II ECF transporter. Proc Natl Acad Sci U S A 110:2534-9 |
Loew, Leslie M; Wang, Da-Neng (2013) Science communication: Quality at stake. Science 342:1169 |