HIV-1 is known to aggravate HCV-related liver disease by accelerating HCV replication through as yet unclear mechanisms. Recent studies indicate that HIV-1 Nef can be transferred from HIV-1 susceptible cells to other uninfected susceptible and even to non-susceptible cells through conduits or exosomes. Further, Nef possesses multiple exacerbating functions including intracellular lipid mediation of HCV replication, complexing with cancer-modulating cellular kinases, and interference with anti-HCV host immune defenses. Accordingly, we have studied the role of Nef in HCV-infected hepatocytes to better understand the pathobiology of co- infection. Our data showed that hepatocytes do not support HIV replication. No evidence of virus replication was observed, even when the HIV-1-transfected hepatocytes were co-cultured with Jurkat T cells, indicating that liver deterioration in the co-infected patient is not due to the replication of HIV-1 in the hepatocytes of the HCV infected host. Instead, HIV-1 Nef protein was found to be transferred from expressing T cells to hepatocytes through conduits, wherein up to 16% of hepatocytes harbor the transferred Nef by co-cultivation with nef-expressing Jurkat cells for 24 hr. Moreover, Nef altered the size and numbers of lipid droplets (LD) and consistently up-regulated HCV replication by 1.5~2.5 fold in the target hepatocytes, which is significant in view of the otherwis indolent baseline replication. Nef also dramatically augmented reactive oxygen species (ROS) production, which can activate signaling molecules, such as MAP kinase, to induce TGF?1 expression. Besides, Nef increased intracellular and cell surface expression of scavenger receptor B1 (SR-B1), which is integral for virus entry and cholesterol trafficking in Huh7.5.1, implying that Nef can foster susceptibility of HCV infection in non-HCV infected hepatocytes. Further, Nef enhanced ethanol-mediated up-regulation of HCV replication so as to accelerate hepatocellular carcinoma (HCC). Taken together, these data indicate that HIV-1 Nef is a critical element in accelerating HCV-mediated liver pathogenesis via enhancing HCV replication and coordinating modulation of key intra- and extra-cellular molecules for liver decay. Based on these preliminary findings, we propose three Specific Aims for this project. Success in achieving these goals will clarify the pathobiologic mechanisms of HIV-1-mediated exacerbation of liver decay, leading to more effective tools for prognosis and therapeutics against dual virus hepatic disease.

Public Health Relevance

Both HIV-1 and HCV are transmitted by shared routes of transmission, including blood transfusion, intravenous drug use, and sexual contact, and therefore a high percentage of these patients are doubly infected. Since liver disease is more severe in co-infected patients and since co-infection rates are high in Western countries, HCV has become a leading cause of morbidity and mortality among AIDS patients. This project is therefore intended to elucidate the role of HIV-1 and viral protein Nef in the progression of HCV-mediated liver disease, towards the development of prognostic biomarkers and therapies against this malady.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
AIDS Clinical Studies and Epidemiology Study Section (ACE)
Program Officer
Doo, Edward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Texas
Anatomy/Cell Biology
Other Domestic Higher Education
Fort Worth
United States
Zip Code
Whitmill, Amanda; Kim, Seongcheol; Rojas, Vivian et al. (2018) Signature molecules expressed differentially in a liver disease stage-specific manner by HIV-1 and HCV co-infection. PLoS One 13:e0202524
Pyeon, Dohun; Timani, Khalid Amine; Gulraiz, Fahad et al. (2016) Function of ubiquitin (Ub) specific protease 15 (USP15) in HIV-1 replication and viral protein degradation. Virus Res 223:161-9
Pyeon, Dohun; Price, Lenore; Park, In-Woo (2015) Comparative molecular genetic analysis of simian and human HIV-1 integrase interactor INI1/SMARCB1/SNF5. Arch Virol 160:3085-91
Luo, Xiaoyu; Fan, Yan; Park, In-Woo et al. (2015) Exosomes are unlikely involved in intercellular Nef transfer. PLoS One 10:e0124436
Pyeon, Dohun; Park, In-Woo (2015) Interaction between Nef and INI1/SMARCB1 augments replicability of HIV-1 in resting human peripheral blood mononuclear cells. Arch Virol 160:727-37
Park, In-Woo; Fan, Yan; Luo, Xiaoyu et al. (2014) HIV-1 Nef is transferred from expressing T cells to hepatocytic cells through conduits and enhances HCV replication. PLoS One 9:e99545