Urinary tract infections (UTI) are one of the most common human infectious diseases. Although most UTIs are self-limited, the potential for those caused by uropathogenic E.coli (UPEC) to progress to kidney and bloodstream infections motivates significant antibiotic use. As an aging population converges with a dramatic increase in antibiotic resistance, it will be necessary to better understand and manage this disease. Efforts to identify UPEC's disease-causing features consistently point to an important role for siderophores, a chemically diverse family of small molecules defined by their ability to bind ferri iron for microbial use. Most uropathogens carry gene sets for two, three, or even four distinct siderophore types despite their functional redundancy for iron uptake. We hypothesize that the additional siderophores expressed by UPEC execute distinctive functions beyond iron acquisition and represent new therapeutic and diagnostic targets. We have developed new mass spectrometry-based analyses to characterize UPEC isolates of greatest clinical concern and to identify associated siderophore functions by detecting their atomic-level interactions with host factors. Using this approach we recently identified an unexpected and pathogenically significant interaction between a virulence-associated UPEC siderophore and host-derived copper ions. Because UPEC strains interact not only with urine but also with host cells and tissues, we will examine how their siderophores function in both of these environments. At this study's conclusion we will have gained new insights into the role of siderophores in UTI pathogenesis and identified new diagnostic and therapeutic strategies for this common and problematic illness.

Public Health Relevance

Bacteria that cause bladder infection and can progress to kidney or blood infection are increasingly antibiotic resistant. Identifying the virulence-associatd molecules these bacteria make during UTI and understanding how they help cause infections will improve future patient care by improving diagnoses and treatment.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK099534-05
Application #
9462089
Study Section
Bacterial Pathogenesis Study Section (BACP)
Program Officer
Kirkali, Ziya
Project Start
2014-07-01
Project End
2019-04-30
Budget Start
2018-05-01
Budget End
2019-04-30
Support Year
5
Fiscal Year
2018
Total Cost
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Robinson, Anne E; Henderson, Jeffrey P; Henzler-Wildman, Katherine A (2018) A mass spectrometry based transport assay for studying EmrE transport of unlabeled substrates. Anal Biochem 549:130-135
Robinson, Anne E; Lowe, Jessica E; Koh, Eun-Ik et al. (2018) Uropathogenic enterobacteria use the yersiniabactin metallophore system to acquire nickel. J Biol Chem 293:14953-14961
Robinson, Anne E; Heffernan, James R; Henderson, Jeffrey P (2018) The iron hand of uropathogenic Escherichia coli: the role of transition metal control in virulence. Future Microbiol 13:745-756
Ohlemacher, Shannon I; Giblin, Daryl E; d'Avignon, D André et al. (2017) Enterobacteria secrete an inhibitor of Pseudomonas virulence during clinical bacteriuria. J Clin Invest 127:4018-4030
Koh, Eun-Ik; Robinson, Anne E; Bandara, Nilantha et al. (2017) Copper import in Escherichia coli by the yersiniabactin metallophore system. Nat Chem Biol 13:1016-1021
Shields-Cutler, Robin R; Crowley, Jan R; Miller, Connelly D et al. (2016) Human Metabolome-derived Cofactors Are Required for the Antibacterial Activity of Siderocalin in Urine. J Biol Chem 291:25901-25910
Trevino, Sergio E; Henderson, Jeffrey P; Wu, Jiami et al. (2016) Prevalence of Asymptomatic Bacteriuria in Hospitalized Patients. Infect Control Hosp Epidemiol 37:749-51
Koh, Eun-Ik; Hung, Chia S; Henderson, Jeffrey P (2016) The Yersiniabactin-Associated ATP Binding Cassette Proteins YbtP and YbtQ Enhance Escherichia coli Fitness during High-Titer Cystitis. Infect Immun 84:1312-1319
Koh, Eun-Ik; Hung, Chia S; Parker, Kaveri S et al. (2015) Metal selectivity by the virulence-associated yersiniabactin metallophore system. Metallomics 7:1011-22
Koh, Eun-Ik; Henderson, Jeffrey P (2015) Microbial Copper-binding Siderophores at the Host-Pathogen Interface. J Biol Chem 290:18967-74

Showing the most recent 10 out of 16 publications