Stenosis at the graft-vein anastomosis due to neointimal hyperplasia (NH) is the predominant cause of failure of arteriovenous grafts (AVGs) used for hemodialysis. Currently, there are no clinical therapies that significantly prevent or tret primary AVG NH. Shunting of arterial blood flow directly into the vein greatly alters the hemodynamics in the vein. Consequently, the fluid shear stress (FSS) and wall circumferential stress (WCS) at the NH-susceptible sites of AVGs are markedly altered. We propose that these hemodynamic changes are major contributors to NH development at the venous anastomosis of AVGs. This project aims to understand the hemodynamic regulation of NH development in AVGs. Detailed FSS and WCS in the AVG setting are not yet fully understood. We will use state-of-the-art image-based computational mechanics to characterize these stresses, and apply these data to design experiments to delineate mechanotransduction pathways. We will focus on i) the roles of two receptor tyrosine kinases (RTKs), vascular endothelial growth factor receptor (VEGFR) and platelet-derived growth factor receptor (PDGFR), as major mechanosensors in the pathogenesis of NH; and ii) the role of the transcription factor E twenty-six-1 (Ets-1) as the primary effector activated by RTK, leading to NH formation. Our proposal is based on our preliminary findings that i) VEGFR, PDGFR and Ets-1 are up-regulated in NH-susceptible sites in a porcine AVG model; ii) the RTK inhibitor sunitinib inhibits Ets-1 expression and NH development in a perfused vein organ culture model; iii) NH formation is reduced by Ets-1 inhibition in a rat model of carotid artery balloon injury and a mouse model of native arteriovenous fistula. Our hypotheses are as follows: i) The activation of RTK and Ets-1 is initiated by increases in FSS and WCS, as a result of increased blood flow and wall distention respectively, at the juxta-anastomotic vein segment of the AVG. ii) VEGFR and PDGFR are the primary mechanosensors in vascular endothelial cells and smooth muscle cells, respectively, that mediate Ets-1 activation by FSS and WCS. iii) RTK activation followed by Ets-1 activation is a critical event in NH formation in the AVG. There are three Specific Aims: i) Understand differences in the mechanical environment between the NH- susceptible and NH-resistant sites of AVG in a porcine model. ii) Determine in a perfused vein culture model whether increased FSS or WCS enhances RTK and Ets-1 activation and subsequently NH formation. iii) Explore whether RTK and Ets-1 mediate NH formation in a porcine AVG model. Delineation of the RTK- and Ets-1-dependent mechanotransduction pathways and exploration of the roles of these pathways in NH formation is novel. The results have the potential for broad applications in other vascular pathological conditions where there is altered blood flow, including AV fistulas. The perfused organ culture system can be used to investigate pharmacological therapies under relevant flow conditions.

Public Health Relevance

Surgically-created blood conduits that are used for chronic hemodialysis are the lifeline for kidney failure patients, but unfortunately these conduits often fil as a result of excessive tissue growth, blocking blood flow. Currently, no clinical therapies are available to significantly prevent or treat this tissue overgrowth. The successful completion of this project will provide a sound background for the development of an innovative strategy to prevent hemodialysis blood conduit failure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK100505-02
Application #
8904664
Study Section
Pathobiology of Kidney Disease Study Section (PBKD)
Program Officer
Kusek, John W
Project Start
2014-08-07
Project End
2018-07-31
Budget Start
2015-08-01
Budget End
2016-07-31
Support Year
2
Fiscal Year
2015
Total Cost
$324,075
Indirect Cost
$106,575
Name
University of Utah
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Martinez, Laisel; Duque, Juan C; Tabbara, Marwan et al. (2018) Fibrotic Venous Remodeling and Nonmaturation of Arteriovenous Fistulas. J Am Soc Nephrol 29:1030-1040
Allon, Michael; Litovsky, Silvio H; Zhang, Yingying et al. (2018) Association of Preexisting Arterial Intimal Hyperplasia with Arteriovenous Fistula Outcomes. Clin J Am Soc Nephrol 13:1358-1363
Allon, Michael; Litovsky, Silvio H; Tey, Jason Chieh Sheng et al. (2018) Abnormalities of vascular histology and collagen fiber configuration in patients with advanced chronic kidney disease. J Vasc Access :1129729818773305
Pike, Daniel; Shiu, Yan-Ting; Somarathna, Maheshika et al. (2017) High resolution hemodynamic profiling of murine arteriovenous fistula using magnetic resonance imaging and computational fluid dynamics. Theor Biol Med Model 14:5
Shang, Fenqing; Wang, Shen-Chih; Hsu, Chien-Yi et al. (2017) MicroRNA-92a Mediates Endothelial Dysfunction in CKD. J Am Soc Nephrol 28:3251-3261
Machin, Daniel R; Leary, Miriam E; He, Yuxia et al. (2016) Ultrasound Assessment of Flow-Mediated Dilation of the Brachial and Superficial Femoral Arteries in Rats. J Vis Exp :
Shiu, Yan-Ting; Litovsky, Silvio H; Cheung, Alfred K et al. (2016) Preoperative Vascular Medial Fibrosis and Arteriovenous Fistula Development. Clin J Am Soc Nephrol 11:1615-23
Wilkins, Justin R; Pike, Daniel B; Gibson, Christopher C et al. (2015) The interplay of cyclic stretch and vascular endothelial growth factor in regulating the initial steps for angiogenesis. Biotechnol Prog 31:248-57
Kwon, Sun Hyung; Li, Li; He, Yuxia et al. (2015) Prevention of Venous Neointimal Hyperplasia by a Multitarget Receptor Tyrosine Kinase Inhibitor. J Vasc Res 52:244-256
Gomez, Arnold David; Zou, Huashan; Shiu, Yan-Ting et al. (2014) Characterization of regional deformation and material properties of the intact explanted vein by microCT and computational analysis. Cardiovasc Eng Technol 5:359-370