The generation of a concentrated urine by the kidney involves a countercurrent multiplication mechanism, which is facilitated by urea transporter (UT)-A-type urea transporters in tubule epithelial cells, and a countercurrent exchange mechanism, which is facilitated by UT-B in microvascular (vasa recta) endothelia. Loss of UT function is predicted to disrupt urinary concentrating ability. We propose UTs as novel targets for the development of a new type of diuretic, which we call 'urearetic', with a novel mechanism of action and a unique clinical indication profile. The primary goal of this proposal is to deliver drug-like, validated UT inhibitors for clinical development. Additional deliverables include the generation of potent UT-selective inhibitors as research tools, and, using these tools, to generate new data on renal UT physiology in rodent models by chemical knockout, recognizing its advantages over gene knockout.
In Aim 1, a novel high-throughput screen will be used to identify UT inhibitors with different UT isoform selectivity profiles.
This aim follows from extensive preliminary data on assay development and identification of UT-B and UT-A1 inhibitors. Screening against each of the major renal UT isoforms, UT-A1, UT-A2 and UT-A3 to identify active compounds for study structure-activity relationships and selectivity profiles will e conducted.
In Aim 2, UT inhibition mechanisms and pharmacology of compounds identified in Aim 1 will be determined in order to establish a prioritized list of compounds for animal testing. Target compound properties include high UT inhibition potency (low nM IC50) and good pharmacological profile. Studies will include: (a) using cell culture models - inhibition reversibility, kinetics, sidedness and urea competition; (b) by computational chemistry - the molecular basis of inhibition potency and selectivity; and (c) using rats - pharmacokinetics, renal/urine accumulation and toxicity.
In Aim 3, rodent models and UT inhibitors will be used to characterize the role of UTs in urinary concentrating function and to obtain proof-of-concept for UT inhibitor therapy of edema. Target effects of UT inhibitors in vivo include increasing urine output and reducing urinary concentrating ability, and reducing edema in clinically relevant states of fluid accumulation. Studies in rats will include measurements of compound effects on urine output, osmolality and urea concentration, and serum urea concentration, during normal hydration and with dehydration DDAVP. Compound(s) will also be tested in a rat model of edema in congestive heart failure. The outcomes of this proposal will include drug-like, validated UT inhibitors for use as research tools and for clinical development, and new information on the role of UTs in the urinary concentrating mechanism.

Public Health Relevance

Urea transporters play an important role in the generation of concentrated urine by the kidney. The goal of this proposal is to identify and optimize drug-like urea transport inhibitors, and to obtain proof-of-concept in animal models for their application as a new type of diuretic, with a novel mechanism of action, to treat states of fluid overload such as in congestive heart failure.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK101373-03
Application #
9044552
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Ketchum, Christian J
Project Start
2014-04-01
Project End
2019-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
3
Fiscal Year
2016
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118
Duan, Tianjiao; Smith, Alex J; Verkman, Alan S (2018) Complement-dependent bystander injury to neurons in AQP4-IgG seropositive neuromyelitis optica. J Neuroinflammation 15:294
Lee, Sujin; Cil, Onur; Diez-Cecilia, Elena et al. (2018) Nanomolar-Potency 1,2,4-Triazoloquinoxaline Inhibitors of the Kidney Urea Transporter UT-A1. J Med Chem 61:3209-3217
Phuan, Puay-Wah; Veit, Guido; Tan, Joseph-Anthony et al. (2018) ?F508-CFTR Modulator Screen Based on Cell Surface Targeting of a Chimeric Nucleotide Binding Domain 1 Reporter. SLAS Discov 23:823-831
Verkman, Alan S; Yao, Xiaoming; Smith, Alex J (2018) The evolving mystery of why skeletal muscle is spared in seropositive neuromyelitis optica. J Cell Mol Med 22:2039-2040
Truong, Eric C; Phuan, Puay W; Reggi, Amanda L et al. (2017) Substituted 2-Acylaminocycloalkylthiophene-3-carboxylic Acid Arylamides as Inhibitors of the Calcium-Activated Chloride Channel Transmembrane Protein 16A (TMEM16A). J Med Chem 60:4626-4635
Smith, Alex J; Yao, Xiaoming; Dix, James A et al. (2017) Test of the 'glymphatic' hypothesis demonstrates diffusive and aquaporin-4-independent solute transport in rodent brain parenchyma. Elife 6:
Tradtrantip, Lukmanee; Jin, Bjung-Ju; Yao, Xiaoming et al. (2017) Aquaporin-Targeted Therapeutics: State-of-the-Field. Adv Exp Med Biol 969:239-250
Cil, Onur; Phuan, Puay-Wah; Son, Jung-Ho et al. (2017) Phenylquinoxalinone CFTR activator as potential prosecretory therapy for constipation. Transl Res 182:14-26.e4
Jin, Byung-Ju; Verkman, A S (2017) Microfluidic platform for rapid measurement of transepithelial water transport. Lab Chip 17:887-895
Felix, Christian M; Lee, Sujin; Levin, Marc H et al. (2017) Pro-Secretory Activity and Pharmacology in Rabbits of an Aminophenyl-1,3,5-Triazine CFTR Activator for Dry Eye Disorders. Invest Ophthalmol Vis Sci 58:4506-4513

Showing the most recent 10 out of 32 publications