Fatty liver disorders affect more than 20% of Americans;however, there are no effective treatment options. The enzymes acetyl-CoA carboxylase (ACC) 1 and ACC2 promote fat synthesis in the liver;therefore, they are attractive drug targets for fatty liver disease and related disorders. To determine how the loss of ACC activity in the liver affects hepatic and whole body metabolism, we generated liver-specific ACC1 and ACC2 double knockout mice (LDKO). We find that these mice are protected from diet-induced glucose intolerance, but accumulate an unexpected increase in liver fat. Our preliminary data suggest that when ACC enzymes are inhibited their substrate acetyl-CoA is used for protein acetylation. In this study we will test the consequences of long-term ACC inhibition on fatty liver disease pathologies and we will determine whether maintaining some residual ACC activity at ACC1 or ACC2 may uncouple the positive effects on glucose tolerance from the increased fat accumulation by preventing protein hyper-acetylation. This work will advance our understanding of the molecular regulation of liver metabolism by ACC enzymes. In addition, this study will guide future pharmacology in the area of developing liver-targeted isotype-sparing ACC inhibitors for the treatment fatty liver disease and related metabolic disorders.

Public Health Relevance

Liver diseases are progressive metabolic disorders that can lead to type II diabetes, hepatocellular cancer, and cardiovascular disease. The current project investigates a role for the enzymes acetyl-CoA carboxylase (ACC) 1 and ACC2 in the regulation of hepatic fat or glucose metabolism via a novel mechanism involving protein acetylation. This study will advance our understanding of the molecular regulation of liver metabolism.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Research Project (R01)
Project #
Application #
Study Section
Hepatobiliary Pathophysiology Study Section (HBPP)
Program Officer
Doo, Edward
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
Schools of Medicine
United States
Zip Code
Nelson, Marin E; Lahiri, Sujoy; Chow, Jenny D Y et al. (2017) Inhibition of hepatic lipogenesis enhances liver tumorigenesis by increasing antioxidant defence and promoting cell survival. Nat Commun 8:14689
Gordon, Hannah M; Majithia, Neil; MacDonald, Patrick E et al. (2017) STEAP4 expression in human islets is associated with differences in body mass index, sex, HbA1c, and inflammation. Endocrine 56:528-537
Taddeo, Evan P; Hargett, Stefan R; Lahiri, Sujoy et al. (2017) Lysophosphatidic acid counteracts glucagon-induced hepatocyte glucose production via STAT3. Sci Rep 7:127
Byrne, Frances L; Hoehn, Kyle L (2016) Subclassification of fatty liver by its pathogenesis: cIEFing is believing. J Pathol 239:3-5
Healy, Marin E; Lahiri, Sujoy; Hargett, Stefan R et al. (2016) Dietary sugar intake increases liver tumor incidence in female mice. Sci Rep 6:22292
Laker, Rhianna C; Taddeo, Evan P; Akhtar, Yasir N et al. (2016) The Mitochondrial Permeability Transition Pore Regulator Cyclophilin D Exhibits Tissue-Specific Control of Metabolic Homeostasis. PLoS One 11:e0167910
Biwer, Lauren A; Taddeo, Evan P; Kenwood, Brandon M et al. (2016) Two functionally distinct pools of eNOS in endothelium are facilitated by myoendothelial junction lipid composition. Biochim Biophys Acta 1861:671-9
Brandon, Amanda E; Stuart, Ella; Leslie, Simon J et al. (2016) Minimal impact of age and housing temperature on the metabolic phenotype of Acc2-/- mice. J Endocrinol 228:127-34
Narayanan, Sowmya; Nieh, Albert H; Kenwood, Brandon M et al. (2016) Distinct Roles for Intracellular and Extracellular Lipids in Hepatitis C Virus Infection. PLoS One 11:e0156996
Cronk, Stephen M; Kelly-Goss, Molly R; Ray, H Clifton et al. (2015) Adipose-derived stem cells from diabetic mice show impaired vascular stabilization in a murine model of diabetic retinopathy. Stem Cells Transl Med 4:459-67

Showing the most recent 10 out of 15 publications