Inter-organ crosstalk via endocrine hormones is a fundamental feature of mammalian metabolic physiology. Disruptions of hormonal signaling have been linked to the development of insulin resistance, type 2 diabetes, and non-alcoholic steatohepatitis (NASH). We recently discovered Neuregulin 4 (NRG4) as a fat-derived hormone that is reduced in mouse and human obesity. Using gain- and loss-of-function mouse models, we demonstrated that NRG4 preserves metabolic health by acting on the liver to attenuate hepatic lipogenesis and stress-induced liver injury. These findings illustrate a novel adipose-hepatic hormonal axis mediated by NRG4 in metabolic signaling and disease pathogenesis. The non-parenchymal cells (NPCs) of the liver represent approximately 30% of total liver cells and play an important role in tissue homeostasis, hepatic metabolism, and disease progression. To delineate the landscape and regulation of liver cell heterogeneity, we performed single-cell RNA sequencing on NPCs isolated from healthy and diet-induced NASH mouse livers. This single-cell analysis revealed unprecedented insights into transcriptomic reprogramming of liver cells during NASH pathogenesis. Based on a body of preliminary data, we hypothesize that NRG4 signaling shapes the liver microenvironment to impinge on the progression of NASH and its associated liver disease. In this proposal, we plan to delineate how NRG4 regulates the transcriptomic and functional properties of liver cells at single-cell resolution. We will determine the mechanisms and significance of the regulation of hepatic immune cell landscape by NRG4 in mediating its effects on NASH pathogenesis. Finally, we plan to assess the therapeutic potential of targeting NRG4 for the treatment of metabolic liver disease.

Public Health Relevance

Non-alcoholic fatty liver disease is a common and serious public health problem that currently lacks effective therapies. Secreted hormones are an important class of metabolic regulators in the body that are uniquely amenable for therapeutic development. We propose to use state-of-the-art genomic tools and genetic and disease models to investigate the mechanisms of action and therapeutic potential of a fat-derived hormone in treating metabolic liver disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK102456-06
Application #
10070438
Study Section
Molecular and Cellular Endocrinology Study Section (MCE)
Program Officer
Doo, Edward
Project Start
2015-07-15
Project End
2025-06-30
Budget Start
2020-07-01
Budget End
2021-06-30
Support Year
6
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Anatomy/Cell Biology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Zhao, Xu-Yun; Li, Siming; DelProposto, Jennifer L et al. (2018) The long noncoding RNA Blnc1 orchestrates homeostatic adipose tissue remodeling to preserve metabolic health. Mol Metab 14:60-70
Zhao, Xu-Yun; Xiong, Xuelian; Liu, Tongyu et al. (2018) Long noncoding RNA licensing of obesity-linked hepatic lipogenesis and NAFLD pathogenesis. Nat Commun 9:2986
Zhang, Peng; Kuang, Henry; He, Yanlin et al. (2018) NRG1-Fc improves metabolic health via dual hepatic and central action. JCI Insight 3:
Meng, Zhuo-Xian; Tao, Weiwei; Sun, Jingxia et al. (2018) Uncoupling Exercise Bioenergetics From Systemic Metabolic Homeostasis by Conditional Inactivation of Baf60 in Skeletal Muscle. Diabetes 67:85-97
Chen, Xiao-Wei; Li, Siming; Lin, Jiandie D (2017) The Micro-Managing Fat: Exosomes as a New Messenger. Trends Endocrinol Metab 28:541-542
Li, Siming; Mi, Lin; Yu, Lei et al. (2017) Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci U S A 114:E7111-E7120
Chen, Zhimin; Wang, Guo-Xiao; Ma, Sara L et al. (2017) Nrg4 promotes fuel oxidation and a healthy adipokine profile to ameliorate diet-induced metabolic disorders. Mol Metab 6:863-872
Meng, Zhuo-Xian; Gong, Jianke; Chen, Zhimin et al. (2017) Glucose Sensing by Skeletal Myocytes Couples Nutrient Signaling to Systemic Homeostasis. Mol Cell 66:332-344.e4
Mi, Lin; Zhao, Xu-Yun; Li, Siming et al. (2017) Conserved function of the long noncoding RNA Blnc1 in brown adipocyte differentiation. Mol Metab 6:101-110
Guo, Liang; Zhang, Peng; Chen, Zhimin et al. (2017) Hepatic neuregulin 4 signaling defines an endocrine checkpoint for steatosis-to-NASH progression. J Clin Invest 127:4449-4461

Showing the most recent 10 out of 15 publications