Research in the past few decades has revealed many key factors in erythropoietin (Epo) and Rac GTPase signaling pathways that are important for the development of various red blood cell related diseases. However, the pathogenesis of many other erythroid disorders, such as congenital dyserythropoietic anemias, Fanconi anemia, sideroblastic anemia, unexplained anemia of the elderly, ineffective erythropoiesis in beta-thalassemia, and myelodysplastic syndromes, remain unclear. These diseases often show unexplained defects in cell differentiation, survival, and actin dynamics that mimic disruptions of Epo and/or Rac GTPase pathways. However, no direct defects in Epo or Rac GTPase pathways have been reported to date in these diseases. An open question in the field is whether there are any proteins or pathways that link Epo and Rac GTPase pathways to regulate terminal erythropoiesis, which could be involved in the pathogenesis of aforementioned diseases. In this effort, we discovered that pleckstrin-2 (plek2) plays a critical role in different stages of terminl erythropoiesis through the interaction with cofilin. Our preliminary data and reports from other groups indicated that plek2 is closely interrelated with Epo and Rac GTPase pathways to regulate erythroid cell differentiation, survival and actin dynamics to form a global regulatory network in erythropoiesis. In this project, we will determine the roles of plek2 as a functional node in erythropoiesis in vitro and in vivo using our well-established mouse fetal erythroblast culture system and various mouse models.
In Aim 1, we will use plek2 knockout mouse model, which showed macrocytic anemia and fetal anemia, to determine the functions of plek2 in erythropoiesis in vivo under steady state and stress conditions. The role of plek2 in the pathogenesis of beta-thalassemia will also be tested using Hbbth1/th1 mice as a direct red cell disease model for plek2.
In Aim 2, we will determine the mechanisms by which plek2 is regulated by Epo signaling pathways transcriptionally or through post-translational modifications.
In Aim 3, we will determine the extent to which plek2-cofilin and Rac GTPase pathways are reciprocally required in different stages of terminal erythropoiesis. Successful accomplishment of these independent but interconnected aims will reveal a central role of plek2 in regulating cell differentiation, survival and actin dynamics in erythropoiesis, which could provide novel insights into the pathogenesis and therapeutic management of red cell related diseases with unclear etiology.

Public Health Relevance

Dysfunctions of red blood cell development can cause a spectrum of diseases ranging from anemias to leukemia and myelodysplastic syndromes. Many of these diseases show unexplained differentiation block, cell death, or cell structure disorganization. Our project will provide important clues for the understanding of the pathogenesis and development of novel therapeutic management of these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK102718-03
Application #
9208774
Study Section
Molecular and Cellular Hematology Study Section (MCH)
Program Officer
Roy, Cindy
Project Start
2015-04-10
Project End
2020-01-31
Budget Start
2017-02-01
Budget End
2018-01-31
Support Year
3
Fiscal Year
2017
Total Cost
$318,177
Indirect Cost
$87,731
Name
Northwestern University at Chicago
Department
Pathology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Melo-Cardenas, Johanna; Xu, Yuanming; Wei, Juncheng et al. (2018) USP22 deficiency leads to myeloid leukemia upon oncogenic Kras activation through a PU.1-dependent mechanism. Blood 132:423-434
Mei, Y; Zhao, B; Basiorka, A A et al. (2018) Age-related inflammatory bone marrow microenvironment induces ineffective erythropoiesis mimicking del(5q) MDS. Leukemia 32:1023-1033
Mei, Yang; Ji, Peng (2018) Targeting age-related inflammation in myelodysplastic syndromes. Oncotarget 9:35376-35377
Zhao, Baobing; Mei, Yang; Cao, Lan et al. (2018) Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest 128:125-140
Mei, Yang; Feng, Gong; Rahimi, Nina et al. (2017) Loss of mDia1 causes neutropenia via attenuated CD11b endocytosis and increased neutrophil adhesion to the endothelium. Blood Adv 1:1650-1656
Zhao, Baobing; Mei, Yang; Schipma, Matthew J et al. (2016) Nuclear Condensation during Mouse Erythropoiesis Requires Caspase-3-Mediated Nuclear Opening. Dev Cell 36:498-510
Zhao, Baobing; Yang, Jing; Ji, Peng (2016) Chromatin condensation during terminal erythropoiesis. Nucleus 7:425-429
Zhao, Baobing; Mei, Yang; Yang, Jing et al. (2016) Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis. Exp Hematol 44:975-81
Zhao, Baobing; Tan, Timothy L; Mei, Yang et al. (2016) H2AX deficiency is associated with erythroid dysplasia and compromised haematopoietic stem cell function. Sci Rep 6:19589
Ji, Peng (2016) Pericytes: new EPO-producing cells in the brain. Blood 128:2483-2485