Hematopoietic stem cell (HSC) transplantation is currently used >16,000 times/year in the United States to treat hematologic disease, leukemia, and to restore hematopoiesis in cancer patients. HSC are thus one of the most clinically exploited stem cell populations. Multiple recent studies demonstrate that the hematopoietic stem and progenitor cells (HSPC) that restore hematopoiesis following bone marrow transplant (BMT) are distinct from those that sustain native hematopoiesis. These findings place an imperative on better understanding the selective regulation of HSPC repopulation. Thus, our laboratory seeks to dissect the cellular and molecular mechanisms that regulate HSC repopulation. In a functional screen for genes whose depletion perturbs HSC in vivo repopulation, we identified the Nuclear Factor I (NFI) gene family member, Nfix, as a novel regulator of HSPC function post-BMT. Loss of Nfix severely curtailed the ability of HSPC to reconstitute ablated mice. Further, Nfix-deficient HSPC display increased apoptosis post-BMT, lack CFU potential, and are reduced in number in recipient bone marrow. As the expression of multiple apoptotic regulators is perturbed in the presence and absence of Nfix in HSPC, we propose that Nfix is a key intrinsic regulator of HSPC survival post-BMT. Here, we will test this hypothesis and also assess a role for Nfix in native hematopoiesis, according to the following specific aims: 1) to test the hypothesis that Nfix regulates HSPC survival post-BMT, 2) to identify the molecular targets of Nfix in HSPC, and 3) to test if Nfix is required during native hematopoiesis.
For Aim 1, we will employ mice deficient in key cell death pathway regulator genes to test if apoptosis is critical to the loss of Nfix-deficient HSPC post-BMT. As Bcl-xL is downregulated in Nfix-deficient HSPC, we will also test if restored Bcl-xL expression rescues the repopulating defect of Nfix-deficient HSPC. Finally, Nfix overexpression greatly prolongs the ex vivo culture of primary hematopoietic cells. Thus, we will also test if Nfix overexpression protects HSPC from apoptosis ex vivo.
For Aim 2, we will leverage the transcriptomes of HSC lacking Nfix, HSC overexpressing Nfix, and NFIX ChIP-seq binding patterns in primitive hematopoietic cell lines to identify candidate downstream targets of Nfix. These candidates will be functionally validated via shRNA-mediated gene knockdown in HSPC overexpressing Nfix for an obligate role in promoting the Nfix- dependent survival of these cultures. We predict that genes necessary here will also play a key role down- stream of Nfix in HSPC post-BMT. Finally, in Aim 3, we will analyze Nfix+/+, Nfixfl/+, and Nfixfl/flROSA26Cre-ERT2 bone marrow chimeras for perturbations in blood lineages, HSPC bone marrow compartments, and HSC quiescence following Nfix deletion. Treatment with tamoxifen efficiently deletes Nfix from the hematopoietic compartment in these mice. By defining Nfix's role as an HSC regulator, we will improve our understanding of HSC and identify new pathways that can be targeted to enhance marrow engraftment after BMT.

Public Health Relevance

Hematopoietic stem cells are blood-forming stem cells that reside in bone marrow and generate all the cells that comprise the blood system. Hematopoietic stem cells are routinely transplanted into patients to treat diseases of the blood and cancer. The major goal of our laboratory is to understand the critical mechanisms that control the ability of these clinically valuable cells engraft a patient and regenerate the entire blood system. Our lab recently discovered that the gene Nfix is vitally important for hematopoietic stem cells to reconstitute the blood system. Here, we propose to determine exactly how Nfix regulates this critical function. Doing so will illuminate the key pathways that control hematopoietic stem cell blood-forming potential and inform efforts to improve the efficiency of hematopoietic stem cell transplantation.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
5R01DK104028-02
Application #
9198983
Study Section
Molecular and Cellular Hematology Study Section (MCH)
Program Officer
Bishop, Terry Rogers
Project Start
2016-01-01
Project End
2020-12-31
Budget Start
2017-01-01
Budget End
2017-12-31
Support Year
2
Fiscal Year
2017
Total Cost
$363,487
Indirect Cost
$160,987
Name
St. Jude Children's Research Hospital
Department
Type
Independent Hospitals
DUNS #
067717892
City
Memphis
State
TN
Country
United States
Zip Code
38105
Hall, Trent; Walker, Megan; Ganuza, Miguel et al. (2018) Nfix Promotes Survival of Immature Hematopoietic Cells via Regulation of c-Mpl. Stem Cells 36:943-950
Morales-Hernández, Antonio; Martinat, Alice; Chabot, Ashley et al. (2018) Elevated Oxidative Stress Impairs Hematopoietic Progenitor Function in C57BL/6 Substrains. Stem Cell Reports 11:334-347
Ganuza, Miguel; Hall, Trent; Finkelstein, David et al. (2017) Lifelong haematopoiesis is established by hundreds of precursors throughout mammalian ontogeny. Nat Cell Biol 19:1153-1163
Ganuza, Miguel; McKinney-Freeman, Shannon (2017) Hematopoietic stem cells under pressure. Curr Opin Hematol 24:314-321
Ganuza, Miguel; Hadland, Brandon; Chabot, Ashley et al. (2017) Murine hemogenic endothelial precursors display heterogeneous hematopoietic potential ex vivo. Exp Hematol 51:25-35.e6
Holmfeldt, Per; Ganuza, Miguel; Marathe, Himangi et al. (2016) Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J Exp Med 213:433-49