Obesity is associated with an increased risk of serious metabolic abnormalities, such as type 2 diabetes, insulin resistance, and nonalcoholic fatty liver disease (NAFLD). Data obtained from studies conducted in humans and rodents have suggested that ?metabolic inflexibility? is critically involved in the pathophysiology of such metabolic abnormalities. The mechanism(s) responsible for obesity-induced metabolic inflexibility is not clear but could involve altered metabolic activity in white adipose tissue (WAT). In the current funding cycle of this grant, we have focused on studying adipose tissue NAD+ biology and conducted a series of studies that demonstrate the causal relationship between defective WAT NAD+ metabolism and metabolic inflexibility. We found: 1) loss of NAMPT, a key NAD+ biosynthetic enzyme, impairs cellular insulin signaling, mitochondrial function, and adrenergic-stimulated lipolytic activity in WAT; 2) adipocyte-specific Nampt knockout (ANKO) mice have multi-organ (skeletal muscle, liver, WAT) insulin resistance, hypoadiponectinemia, impaired adaptive thermogenesis and whole-body energy metabolism, and impaired fuel selection to hypercaloric and hypocaloric challenges; 3) a novel molecular link between NAD+ metabolism and Caveolin-1 (CAV1), a key regulator of whole-body metabolic flexibility; 4) dietary restriction and exercise, well-known enhancers of metabolic flexibility, stimulate NAMPT-mediated NAD+ biosynthesis in WAT; and 5) consistent with our rodent data, people with obesity have decreases in WAT NAMPT expression and NAD+ concentration. Based on these findings, this renewal application will test the hypotheses that NAMPT-mediated NAD+ biosynthesis regulates CAV1 and mitochondrial function in WAT, key effectors of metabolic flexibility and glucose metabolism, and that defective WAT NAD+ metabolism is a novel mechanism and therapeutic target for obesity-induced metabolic inflexibility.
In Aim 1, we propose to generate two novel mouse models, mice overexpressing NAMPT selectively in visceral WAT (using the novel AAV system) and tamoxifen-inducible ANKO (iANKO) mice, and evaluate metabolic responses to high-fat diet feeding and lifestyle modification (dietary restriction, exercise).
In Aim 2, we propose to use in vitro systems and explore four mechanisms (lysine acetylation of CAV1, PPARG, sirtuins, and redox metabolism) that link NAD+ metabolism with CAV1 and mitochondrial function. Finally, in Aim 3, we propose to determine the potential clinical relevance of the studies we conducted in the mouse model (Aim 1) and cell culture systems (Aim 2). Specifically, we will evaluate the effects of two potential ?NAD+ enhancers?, namely lifestyle modification (low- calorie diet supervised exercise training) and nicotinamide mononucleotide (NMN) supplementation (250 mg/day, 8 weeks), on WAT NAD+ metabolism, CAV1, and mitochondrial biology in overweight people. The anticipated results obtained from this proposal will provide novel insight into the importance of adipose tissue NAD+ biology in regulating metabolic flexibility and glucose metabolism.

Public Health Relevance

Obesity is associated with ?metabolic inflexibility?, which is involved in the pathophysiology of obesity-induced metabolic abnormalities, such as type 2 diabetes and insulin resistance. The proposed studies aim to understand the mechanisms of obesity-induced metabolic flexibility and develop new obesity treatment by using genetically engineered mouse models, cell culture system, and human adipose tissue biopsy samples.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
2R01DK104995-06
Application #
9978503
Study Section
Integrative Nutrition and Metabolic Processes Study Section (INMP)
Program Officer
Haft, Carol R
Project Start
2016-01-11
Project End
2024-12-31
Budget Start
2021-01-01
Budget End
2021-12-31
Support Year
6
Fiscal Year
2021
Total Cost
Indirect Cost
Name
Washington University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
Liss, Kim H H; Lutkewitte, Andrew J; Pietka, Terri et al. (2018) Metabolic importance of adipose tissue monoacylglycerol acyltransferase 1 in mice and humans. J Lipid Res 59:1630-1639
Chondronikola, Maria; Magkos, Faidon; Yoshino, Jun et al. (2018) Effect of Progressive Weight Loss on Lactate Metabolism: A Randomized Controlled Trial. Obesity (Silver Spring) 26:683-688
Rajagopal, Rithwick; Zhang, Sheng; Wei, Xiaochao et al. (2018) Retinal de novo lipogenesis coordinates neurotrophic signaling to maintain vision. JCI Insight 3:
Yoshino, Jun; Baur, Joseph A; Imai, Shin-Ichiro (2018) NAD+ Intermediates: The Biology and Therapeutic Potential of NMN and NR. Cell Metab 27:513-528
Logan, Ryan W; Parekh, Puja K; Kaplan, Gabrielle N et al. (2018) NAD+ cellular redox and SIRT1 regulate the diurnal rhythms of tyrosine hydroxylase and conditioned cocaine reward. Mol Psychiatry :
Porter, Lane C; Franczyk, Michael P; Pietka, Terri et al. (2018) NAD+-dependent deacetylase SIRT3 in adipocytes is dispensable for maintaining normal adipose tissue mitochondrial function and whole body metabolism. Am J Physiol Endocrinol Metab 315:E520-E530
Ban, Norimitsu; Siegfried, Carla J; Lin, Jonathan B et al. (2017) GDF15 is elevated in mice following retinal ganglion cell death and in glaucoma patients. JCI Insight 2:
Yamaguchi, Shintaro; Yoshino, Jun (2017) Adipose tissue NAD+ biology in obesity and insulin resistance: From mechanism to therapy. Bioessays 39:
Lin, Jonathan B; Kubota, Shunsuke; Ban, Norimitsu et al. (2016) NAMPT-Mediated NAD(+) Biosynthesis Is Essential for Vision In Mice. Cell Rep 17:69-85
Stromsdorfer, Kelly L; Yamaguchi, Shintaro; Yoon, Myeong Jin et al. (2016) NAMPT-Mediated NAD(+) Biosynthesis in Adipocytes Regulates Adipose Tissue Function and Multi-organ Insulin Sensitivity in Mice. Cell Rep 16:1851-60

Showing the most recent 10 out of 11 publications