Type 2 diabetes is an epidemic health problem, but in part due to the incomplete understanding on the underlying mechanisms, the current treatments or preventive options are limited. A central paradox in the pathogenesis of type 2 diabetes is the selective mode of hepatic insulin resistance, in which insulin fails to suppress hepatic gluconeogenesis but continues to stimulate lipogenesis, resulting in hyperglycemia and hypertriglyceridemia. Although the acute regulation of glucose and lipid metabolism is largely through changes in metabolite flux and allosteric modulation of key enzyme activities, the chronic regulation of metabolism requires gene transcription. As a cofactor that links multiple transcription factors to RNA polymerase II, the Mediator complex has merged as an important regulator of metabolism. The mammalian Mediator complex is composed of up to 30 subunits. Our central hypothesis is that the Mediator complex integrates hormonal and/or nutritional signals with metabolic gene expression by connecting relevant transcription factors to RNA polymerase II through specific binding domains within particular Mediator subunits. This proposal is focused on a novel interaction between the Mediator subunit MED15 and GATA4 transcription factor. In addition to our previous work showing that MED15 stimulates lipogenesis by co- activating SREBP-1c transcription factor, our preliminary studies support a role of hepatic GATA4/MED15 complex in activating gluconeogenesis and in the development of insulin resistance. Interestingly, although the molecular mechanisms are unknown, human genetic studies indicate that mutations in Gata4 gene (likely gain of function) among all reported genetic variations display the strongest correlation with hypertriglyceridemia. Our hypothesis will be tested in two Specific Aims:
Aim 1 will study insulin regulation of hepatic GATA4 in glucose metabolism, and Aim 2 will study the role of hepatic MED15 coactivating SREBP-1c and GATA4 in insulin resistance. A combined genetic and gene delivery approaches together with metabolic, biochemical and molecular analyses will be used to carry out these Aims. All key animal models, reagents and techniques have been established, and supportive preliminary results have been obtained. Overall, successful completion of the proposed studies will yield a novel insight into the mechanisms underlying selective hepatic insulin resistance, and may also aid the development of novel interventional strategies against type 2 diabetes.

Public Health Relevance

(Public Health Relevance Statement) The epidemic of obesity has caused a prevalence of type 2 diabetes and other metabolic diseases in the United States and worldwide. Millions of Americans are now diagnosed with type 2 diabetes and the health care cost of diabetes is in billions of dollars each year. However, the molecular mechanisms underlying the regulation of energy metabolism remain poorly understood. This proposal will study a novel effector complex of insulin in the liver that controls gluconeogenesis and is involved in insulin resistance. The outcomes of this study will have significant and positive impacts in the field of metabolism and diabetes, and may also aid the development of new approaches for the treatment of type 2 diabetes.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK117417-01A1
Application #
9886405
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Silva, Corinne M
Project Start
2020-01-03
Project End
2023-11-30
Budget Start
2020-01-03
Budget End
2020-11-30
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
Albert Einstein College of Medicine
Department
Type
DUNS #
081266487
City
Bronx
State
NY
Country
United States
Zip Code
10461