The goal of this revised R01 is to determine how a hypothalamic region integrates and then processes hormone and CNS metabolic cues to affect sex-dependent physical activity behavior in female mice. We showed previously that loss of hormone-responsive neurons in the medial basal hypothalamus (MBH) diminishes activity only in female mice. In new work, we discovered that a small, discrete cluster of melanocortin 4 receptor (Mc4r)-expressing neurons in the ventrolateral region of the ventromedial hypothalamus (VMHvlMC4R neurons) increases female activity and promotes weight loss when activated. Increasing dosage of Mc4r in the VMHvl of wild type female mice by CRISPRa increases distance traveled leading to weight loss when pair-fed with control mice. Here, we will ask if this VMHvlMC4R node can be exploited to mitigate age-related and environmental- induced metabolic challenges and also define the mechanistic pathway and circuits responsible for regulating this module.
Aim 1 will ask if the VMHvlMC4R node depends on hormones, can improve metabolic deficits, and whether silencing this node (inhibitory DREADDs) results in lowered physical activity behaviors.
Aim 2 will confirm that Mc4r is an integral part of this node and define other signaling components that participate in the VMHvlMC4R activity node.
Aim 3 will address the physiological consequences of melanocortin and estrogen signaling in modulating VMHvlMC4R neuron activity by electrophysiology brain slice recordings with the Gao lab (Yale) and begin mapping inputs that interact with VMHvlMC4R neurons. We posit that this ancillary VMHvlMC4R female-module disengages in states of low or no estrogen (estrus or post-menopause period) thereby reducing metabolic fitness. Our approaches to define the molecular basis of this VMHvl activity node are highly innovative and likely to provide novel insights into how fluctuating hormone-status in a normal cycling female or during different life-stages drives physical activity behaviors.

Public Health Relevance

? RELEVANCE TO PUBLIC HEALTH Poor metabolic health and reduced activity is prevalent in older humans, especially with expanded longevity. Using mouse models, we discovered a small cluster of neurons in the brain that control a sex- dependent ancillary activity circuit in females. We aim to leverage our findings to understand age-related metabolic decline commonly experienced by postmenopausal women.

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Research Project (R01)
Project #
1R01DK121657-01A1
Application #
9998359
Study Section
Integrative Physiology of Obesity and Diabetes Study Section (IPOD)
Program Officer
Hyde, James F
Project Start
2020-03-01
Project End
2025-02-28
Budget Start
2020-03-01
Budget End
2021-02-28
Support Year
1
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of California San Francisco
Department
Pharmacology
Type
Schools of Medicine
DUNS #
094878337
City
San Francisco
State
CA
Country
United States
Zip Code
94118