Immediate implant loading produces micromotion at the bone-implant interface, which can lead to fibrous or fibrocartilaginous encapsulation and implant failure. While mechanical conditions such as these appear to influence healing of skeletal tissues, there is only an incomplete understanding of the key physical factors and underlying mechanisms that influence cell fate decisions at the bone-implant interface. As a result, there is a limited scientific basis for the design of load-bearing implants for use in skeletal tissues. Our working hypothesis is that deformation in healing tissue as defined by principal strain magnitude, spatial extent, and related factors regulates cell fate decisions at the bone-implant interface. The proposed work will test this hypothesis in a mouse model using a miniature implant device that permits control and quantification of the biomechanical environment (i.e., the strain state) of the healing bone-implant interface, and which allows us to measure the cellular response to different mechanical stimuli using molecular, cellular, and genetic approaches.
Aim 1 will examine how variations in strain magnitude, spatial extent, and number of strain cycles per day influence mechanobiology at the healing bone-implant interface. Our miniature device and implant design allows us to create situations where either principal compressive strain is the dominant type of strain, or principal tensile strain is the dominant type of strain. Strain will be measured using micro-CT and digital image correlation then correlated, in time and space, with the in vivo cellular response. Together, these experimental results will allow us to identify regimes of """"""""safe"""""""", """"""""dangerous"""""""", or """"""""stimulatory"""""""" principal tensile or compressive strain.
Aim 2 will explore how cells at a healing interface detect and decipher physical stimuli such as strain. Primary cilia are implicated in fetal bone mechanotransduction;we hypothesize that primary cilia are required for implant mechanotransduction. We will test this hypothesis by conditionally inactivating an essential component of the primary cilium molecular machinery, Kif3a, and measuring how this alters response to strain state and healing of the bone-implant interface.
Aim 3 will test whether biomechanical strain operates at multiscale levels (macro, micro, and nano) to influence cell differentiation at implant interfaces. We hypothesize that an implant's surface texture (roughness) can influence local strain fields at the same size scale, e.g., microns. This will be tested by subjecting implants with differing surface textures to micromotions that are of the same size as the roughness. Overall, this project will contribute scientific insight that can guide design decisions with skeletal implants.

Public Health Relevance

Loosening and failure of load-bearing bone implants remain a major health problem. In order to help solve this problem, this project is trying to understand why certain mechanical conditions at the bone-implant interface are dangerous to the healing processes, while others are safe and sometimes even beneficial to healing. Our work focuses on the role of deformation of healing tissues;the ways that living cells sense that deformation;and the ways that an implant's overall shape as well as its surface roughness can be better designed to take advantage of this knowledge.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
7R01EB000504-07
Application #
8003486
Study Section
Musculoskeletal Tissue Engineering Study Section (MTE)
Program Officer
Henderson, Lori
Project Start
2002-09-01
Project End
2012-04-30
Budget Start
2009-09-01
Budget End
2010-04-30
Support Year
7
Fiscal Year
2009
Total Cost
$210,407
Indirect Cost
Name
Stanford University
Department
Surgery
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94305
Lim, Won Hee; Liu, Bo; Cheng, Du et al. (2014) Wnt signaling regulates pulp volume and dentin thickness. J Bone Miner Res 29:892-901
Mouraret, S; Hunter, D J; Bardet, C et al. (2014) A pre-clinical murine model of oral implant osseointegration. Bone 58:177-84
Mouraret, Sylvain; Hunter, Daniel J; Bardet, Claire et al. (2014) Improving oral implant osseointegration in a murine model via Wnt signal amplification. J Clin Periodontol 41:172-80
Li, Jingtao; Johnson, Chelsey A; Smith, Andrew A et al. (2014) Molecular mechanisms underlying skeletal growth arrest by cutaneous scarring. Bone 66:223-31
Haïat, Guillaume; Wang, Hom-Lay; Brunski, John (2014) Effects of biomechanical properties of the bone-implant interface on dental implant stability: from in silico approaches to the patient's mouth. Annu Rev Biomed Eng 16:187-213
Wazen, Rima M; Kuroda, Shingo; Nishio, Clarice et al. (2013) Gene expression profiling and histomorphometric analyses of the early bone healing response around nanotextured implants. Nanomedicine (Lond) 8:1385-95
Leucht, P; Monica, S D; Temiyasathit, S et al. (2013) Primary cilia act as mechanosensors during bone healing around an implant. Med Eng Phys 35:392-402
Wazen, Rima M; Currey, Jennifer A; Guo, Hongqiang et al. (2013) Micromotion-induced strain fields influence early stages of repair at bone-implant interfaces. Acta Biomater 9:6663-74
Variola, Fabio; Brunski, John B; Orsini, Giovanna et al. (2011) Nanoscale surface modifications of medically relevant metals: state-of-the art and perspectives. Nanoscale 3:335-53
Popelut, Antoine; Rooker, Scott M; Leucht, Philipp et al. (2010) The acceleration of implant osseointegration by liposomal Wnt3a. Biomaterials 31:9173-81

Showing the most recent 10 out of 15 publications