This work proposes development and implementation of acoustic and optic measurement methods capable of determining absolute sensitivity of miniature ultrasonic hydrophone probes over a wide, 100 M}Iz bandwidth. Absolutely calibrated probes are needed to determine and monitor acoustic output of ultrasound imaging devices, which presently account for about 30 percent of all imaging procedures. Although a majority of clinical imaging is performed at frequencies less than 15 MHz, due to the nonlinear propagation effect in tissue, which constitutes the basis of harmonic imaging, diagnostic pulses can have spectral content from 100 kHz to 100 MHz. Also catheter based systems routinely use frequencies beyond 20 MHz. Moreover, to properly measure mechanical bioeffects exposure index (MI) and to comply with regulatory guidelines, the hydrophone probes should be calibrated in the frequency range extending to 8 times center frequency of the imaging transducer. In addition, dermatological, ophthalmological and pre-clinical applications of ultrasound utilize imaging transducers in the frequency range 20-100 MHz. However, currently used calibration technology is usually limited to approximately 20 MHz and therefore, there is a need for research and development of high frequency calibration techniques capable of determining frequency response of the miniature ultrasound hydrophone probes. In the United States, the national laboratory traceable data are limited to approximately 21 MHz and are available at discrete frequencies only. The outcome of this work will facilitate characterization of high frequency medical ultrasonic fields and assessment of the safety of diagnostic ultrasound devices operating at frequencies beyond 20 MHz or containing harmonics in the signal due to nonlinear propagation phenomena. Globally, no reference laboratory succeeded so far in providing virtually continuous calibration data that are expected to be available as the result of this research. The proposed research will also provide a tool to calculate Mechanical and Thermal Indices in case of conventional 3-12 MHz equipment operating at high pressure amplitudes. The indices are widely accepted as predictors of potential bioeffects. Also, the results of this research are applicable to design and optimization of ultrasound imaging transducers. PIs have succeeded in fabricating fiber optic tips having diameters equal to a fraction of a wavelength at 100 MHz and are hopeful that these fiber optic probes will be suitable to replace piezoelectric hydrophones in measurements where spatial averaging errors are unacceptable.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
8R01EB002024-03
Application #
6648377
Study Section
Diagnostic Imaging Study Section (DMG)
Program Officer
Lyster, Peter
Project Start
2001-09-30
Project End
2005-08-31
Budget Start
2003-09-01
Budget End
2005-08-31
Support Year
3
Fiscal Year
2003
Total Cost
$239,317
Indirect Cost
Name
Drexel University
Department
Type
Schools of Engineering
DUNS #
002604817
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Lewin, P A; Mu, C; Umchid, S et al. (2005) Acousto-optic, point receiver hydrophone probe for operation up to 100 MHz. Ultrasonics 43:815-21
Radulescu, Emil G; Lewin, Peter A; Wojcik, Janusz et al. (2004) Probing acoustic fields of clinically relevant transducers: the effect of hydrophone probes' finite apertures and bandwidths. IEEE Trans Ultrason Ferroelectr Freq Control 51:1262-70
Radulescu, E G; Lewin, P A; Wojcik, J et al. (2004) The influence of finite aperture and frequency response of ultrasonic hydrophone probes on the determination of acoustic output. Ultrasonics 42:367-72
Radulescu, E G; Lewin, P A; Wojcik, J et al. (2003) Calibration of ultrasonic hydrophone probes up to 100 MHz using time gating frequency analysis and finite amplitude waves. Ultrasonics 41:247-54
Radulescu, E G; Lewin, P A; Nowicki, A et al. (2003) Hydrophones' effective diameter measurements as a quasi-continuous function of frequency. Ultrasonics 41:635-41
Radulescu, E G; Wojcik, J; Lewin, P A et al. (2003) Nonlinear propagation model for ultrasound hydrophones calibration in the frequency range up to 100 MHz. Ultrasonics 41:239-45