While the display of high resolution magnetic resonance (MR) images in the operating room (OR) has revolutionized neuronavigation, tissue motion during surgery compromises the value of preoperative image information for navigational decision-making due to registration errors which accumulate between the dynamic OR space and the static preoperative image reference frame. While it is clear that intraoperative brain motion is significant, strategies to address this source of error during image-guidance are in early stages of development. A conceptually powerful approach to update preoperative images intraoperatively would be to generate a patient-specific computational model, collect readily accessible but incomplete intraoperative information relevant to brain motion with low-cost tracking technology, modify the model accordingly, and then update the preoperatively-obtained high resolution images. During the previous funding period, many of the elements needed to implement a modeling strategy in the OR have been developed and the confluence of these components has been demonstrated in a series of clinical cases analyzed retrospectively involving post-craniotomy brain sag which has been found to be one of the predominant modes of intraoperative brain deformation. The focus of this continuation application is two-fold: (i) to automate and merge the acquisition of incomplete intraoperative tissue motion data with an enhanced version of the existing computational model to provide updated images on a time-scale relevant to navigational decision-making directly in the OR, and (ii) to expand the use of preoperative image information in the construction of patient-specific models, namely to develop tissue property estimation schemes based on MR imaging. To achieve these goals, the specific aims are: (1) to extend model capabilities to include the later neurosurgical events of tissue retraction and resection and the mechanical response from viscoelastic and antisotropic behaviors, (2) to expand the acquisition of preoperative patient-specific image data to include mechanical and hydraulic property estimates based on MR elastography and diffusion tensor imaging, (3) to automate the intraoperative acquisition and integration of tissue motion data obtained from cortical surface scanning, coregistered ultrasound and instrumented retractors as model constraints, (4) to validate and assess in vivo the advances associated with Specific Aims 1-3 in the porcine brain, and (5) to evaluate model updating of preoperative images in human subjects using incomplete intraoperative data and full volumetric information obtained independently from intraoperative MR/CT. Successful completion of these aims is likely to lead to a methodology for retaining the registration accuracy of the high definition preoperative image of information which would preserve the value of image-guided procedures even in the face of considerable intraoperative brain motion.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
8R01EB002082-08
Application #
6639475
Study Section
Diagnostic Imaging Study Section (DMG)
Program Officer
Haller, John W
Project Start
1996-07-17
Project End
2005-03-31
Budget Start
2003-04-01
Budget End
2004-03-31
Support Year
8
Fiscal Year
2003
Total Cost
$344,162
Indirect Cost
Name
Dartmouth College
Department
Type
Schools of Engineering
DUNS #
041027822
City
Hanover
State
NH
Country
United States
Zip Code
03755
Fan, Xiaoyao; Ji, Songbai; Hartov, Alex et al. (2014) Stereovision to MR image registration for cortical surface displacement mapping to enhance image-guided neurosurgery. Med Phys 41:102302
Ji, Songbai; Roberts, David W; Hartov, Alex et al. (2011) Real-time interpolation for true 3-dimensional ultrasound image volumes. J Ultrasound Med 30:243-52
Valdés, Pablo A; Fan, Xiaoyao; Ji, Songbai et al. (2010) Estimation of brain deformation for volumetric image updating in protoporphyrin IX fluorescence-guided resection. Stereotact Funct Neurosurg 88:1-10
Hartov, Alex; Paulsen, Keith; Ji, Songbai et al. (2010) Adaptive spatial calibration of a 3D ultrasound system. Med Phys 37:2121-30
Ji, Songbai; Roberts, David W; Hartov, Alex et al. (2009) Combining multiple true 3D ultrasound image volumes through re-registration and rasterization. Med Image Comput Comput Assist Interv 12:795-802
Ji, Songbai; Hartov, Alex; Roberts, David et al. (2009) Data assimilation using a gradient descent method for estimation of intraoperative brain deformation. Med Image Anal 13:744-56
Liu, Fenghong; Lollis, S Scott; Ji, Songbai et al. (2009) Model-based estimation of ventricular deformation in the cat brain. Med Image Comput Comput Assist Interv 12:308-15
Ji, Songbai; Roberts, David W; Hartov, Alex et al. (2009) Brain-skull contact boundary conditions in an inverse computational deformation model. Med Image Anal 13:659-72
Ji, Songbai; Wu, Ziji; Hartov, Alex et al. (2008) Mutual-information-based image to patient re-registration using intraoperative ultrasound in image-guided neurosurgery. Med Phys 35:4612-24
Lunn, Karen E; Paulsen, Keith D; Liu, Fenghong et al. (2006) Data-guided brain deformation modeling: evaluation of a 3-D adjoint inversion method in porcine studies. IEEE Trans Biomed Eng 53:1893-900