Technologies that can help make accurate, objective and automated decisions to aid the pathologist are sorely needed in clinical practice to improve accuracy and contain costs. The major goal of this project is to provide a practical imaging instrument for clinical and research use that can be operated by any trained person in pathology laboratories. The approach is based, first, on developing novel instrumentation and analytical methods for robust discrete frequency infrared (DF-IR) spectroscopic imaging. The instrument presents a departure from the current state of the art. Second, the approach is made practical by enabling the incorporation of uncooled detectors via advanced control algorithms. Last, the developed instrument is tested in a clinical setting and results that will lead to clinical trials will be obtained. If the project is successful, it has the potential to transform decision-making for patients and alter the standard practice of histologic assessment in research. We specifically target two areas: the rapid detection of important biopsy slides in prostate cancer (those that are diagnostically valid and contain cancer) and rapid detection of cancer in breast tissues. Both are accomplished without any dyes, stains or human supervision.

Public Health Relevance

The first goal of this project is to provide a new chemical imaging instrument for clinical and research use that can be operated by any trained person in pathology laboratories. The project has the potential to transform diagnosis and therapy decisions for patients by enabling early decisions and accurate diagnoses without dyes, stains or human input. Proposing to develop the processes for breast and prostate cancer, the technology could impact over 2 million people screened positive for cancer every year. If successful, establishment of the instrumentation and analytical methods here would alter the standard practice in histologic assessment of future research in cancer.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Instrumentation and Systems Development Study Section (ISD)
Program Officer
Conroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Illinois Urbana-Champaign
Organized Research Units
United States
Zip Code
Wrobel, Tomasz P; Bhargava, Rohit (2018) Infrared Spectroscopic Imaging Advances as an Analytical Technology for Biomedical Sciences. Anal Chem 90:1444-1463
Mittal, Shachi; Yeh, Kevin; Leslie, L Suzanne et al. (2018) Simultaneous cancer and tumor microenvironment subtyping using confocal infrared microscopy for all-digital molecular histopathology. Proc Natl Acad Sci U S A 115:E5651-E5660
Mankar, Rupali; Walsh, Michael J; Bhargava, Rohit et al. (2018) Selecting optimal features from Fourier transform infrared spectroscopy for discrete-frequency imaging. Analyst 143:1147-1156
Bhargava, Rohit; Madabhushi, Anant (2016) Emerging Themes in Image Informatics and Molecular Analysis for Digital Pathology. Annu Rev Biomed Eng 18:387-412
Ostadhossein, Fatemeh; Misra, Santosh K; Mukherjee, Prabuddha et al. (2016) Defined Host-Guest Chemistry on Nanocarbon for Sustained Inhibition of Cancer. Small 12:5845-5861
Misra, Santosh K; Mukherjee, Prabuddha; Chang, Huei-Huei et al. (2016) Multi-functionality Redefined with Colloidal Carotene Carbon Nanoparticles for Synchronized Chemical Imaging, Enriched Cellular Uptake and Therapy. Sci Rep 6:29299
Pounder, F Nell; Reddy, Rohith K; Bhargava, Rohit (2016) Development of a practical spatial-spectral analysis protocol for breast histopathology using Fourier transform infrared spectroscopic imaging. Faraday Discuss 187:43-68
Mayerich, David; Walsh, Michael J; Kadjacsy-Balla, Andre et al. (2015) Stain-less staining for computed histopathology. Technology (Singap World Sci) 3:27-31
Leslie, L Suzanne; Wrobel, Tomasz P; Mayerich, David et al. (2015) High definition infrared spectroscopic imaging for lymph node histopathology. PLoS One 10:e0127238
DeVetter, Brent M; Mukherjee, Prabuddha; Murphy, Catherine J et al. (2015) Measuring binding kinetics of aromatic thiolated molecules with nanoparticles via surface-enhanced Raman spectroscopy. Nanoscale 7:8766-75

Showing the most recent 10 out of 28 publications