Targeting nanotherapeutics against murine and feline oral cancer Abstract: This is a competitive renewal proposal of our R01 EB012569 grant. Through the R01 support, we have recently developed an exciting nanoplatform, which we believe will be an excellent subject for this competitive R01 renewal. This novel multifunctional porphyrin-based micellar nanoplatform, recently published in Nature Communication (August 2014), allows (i) efficient encapsulation of hydrophobic chemotherapeutic drugs or hsp90 inhibitor, (ii) near-infra red fluorescent (NIRF) detection of the tumor based on the intrinsic fluorescence of porphyrins and/or encapsulated cyanine dye, (iii) efficient free radical and heat generation at tumor site upon activation with light for photodynamic therapy (PDT) and photothermal therapy (PTT), respectively, (iv) convenient ligation of cancer-targeting ligands to the surface of the micelle for cancer-specific targeted delivery, and (v) chelation of Gd (III) or 64Cu for MRI and PET imaging, respectively. We have shown that nanoporphyrin-mediated PDT led to significant tumor inhibition by using much lower dose of light and photosensitizer compared with the recently reported porphyrin formulations, e.g. liposomal porphyrins. Furthermore, the nanoporphyrin-mediated combination chemotherapy and PDT (Chemo-PDT) was dramatically more efficacious than single treatment alone. This novel PDT agent is far superior than existing FDA approved photosensitizer. We therefore would like to develop this agent for the treatment of oral cancers, which is readily accessible to illumination with near infrared light (NIRL). We will use both xenograft model and spontaneous oral cancer in companion cat to evaluate this novel nanotheranostic agent. The 4 specific aims are:
Aim 1. To design and synthesize porphyrin/cyanine dye derivatives and use them to prepare various hybrid telodendrimers suitable for the construction of micelle-based porphyrin nanoparticles called nanoporphyrins (NP).
Aim 2. To use optical and MR imaging to determine the biodistribution and OSCC targeting properties of targeting-crosslinked NPs (CNPs) from aim 1, using orthotopically implanted luciferase-transfected OSCC xenograft models.
Aim 3. To determine the in vivo toxicity and anti-tumor efficacy of the doxorubicin/17AAG-loaded targeting-CNPs optimized in aim 2.
Aim 4. To use companion cat with spontaneous oral cancer as a model system to (i) determine the biodistribution and tumor uptake of targeting-CNP using optical imaging and MRI scan, (ii) perform pharmacokinetic and pharmacodynamics studies of CNP, and (iii) perform a Phase I clinical trial of phototherapy of drug-loaded targeting CNP. Innovation and Impact Our crosslinked nanoporphyrin (CNP) can (i) afford multimodality imaging (near- infra red fluorescent, MRI, PET, and SPECT), and quadruple whammy against targeted tumor (PDT, PTT, chemotherapy and Hsp90 inhibitor), (ii) reach even very small metastatic tumor cell cluster (50-100 m), and (iii) take advantage of the tumor ligand LLS13 that we have already identified for enhancing intracellular uptake. Papilloma virus associated oropharyngeal cancer is on the rise in the United States3. It is one of the few cancers that are accessible to illumination with light, making it an ideal tumor type that can greatly benefit from this novel photo-theranostic agent for both detection and elimination of the disease.

Public Health Relevance

Targeting nanotherapeutics against murine and feline oral cancer Narrative: This is a competitive renewal proposal of our R01 EB012569 grant. Through the R01 support, we have recently developed an exciting nanoplatform, which we believe will be an excellent subject for this competitive R01 renewal. This novel multifunctional porphyrin-based micellar nanoplatform, recently published in Nature Communication (August 2014) contains 8 functions all in one nanocarrier for chemotherapy, phototherapy, radiotherapy, and multimodality imaging (MRI, PET, SPECT, Optical). It is far superior than existing FDA approved photosensitizer for photodynamic therapy. We will develop this agent for the treatment of oral cancers, which is readily accessible to illumination with near infrared light (NIRL). We will use both xenograft model and spontaneous oral cancer in companion cat to evaluate this novel nanotheranostic agent.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
2R01EB012569-05A1
Application #
9030096
Study Section
Gene and Drug Delivery Systems Study Section (GDD)
Program Officer
Rampulla, David
Project Start
2010-12-01
Project End
2020-05-31
Budget Start
2016-09-20
Budget End
2017-05-31
Support Year
5
Fiscal Year
2016
Total Cost
$462,903
Indirect Cost
$163,383
Name
University of California Davis
Department
Biochemistry
Type
Schools of Medicine
DUNS #
047120084
City
Davis
State
CA
Country
United States
Zip Code
95618
Xiao, Kai; Liu, Qiangqiang; Al Awwad, Nasir et al. (2018) Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. Nanoscale 10:8207-8216
Arun, Adith S; Tepper, Clifford G; Lam, Kit S (2018) Identification of integrin drug targets for 17 solid tumor types. Oncotarget 9:30146-30162
Luo, Yan; Wu, Hao; Feng, Caihong et al. (2017) ""One-Pot"" Fabrication of Highly Versatile and Biocompatible Poly(vinyl alcohol)-porphyrin-based Nanotheranostics. Theranostics 7:3901-3914
Xiao, Kai; Lin, Tzu-Yin; Lam, Kit S et al. (2017) A facile strategy for fine-tuning the stability and drug release of stimuli-responsive cross-linked micellar nanoparticles towards precision drug delivery. Nanoscale 9:7765-7770
Xiao, Wenwu; Suby, Nell; Xiao, Kai et al. (2017) Extremely long tumor retention, multi-responsive boronate crosslinked micelles with superior therapeutic efficacy for ovarian cancer. J Control Release 264:169-179
Yang, Xixiao; Xue, Xiangdong; Luo, Yan et al. (2017) Sub-100nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. J Control Release 261:297-306
Lin, Tzu-Yin; Guo, Wenchang; Long, Qilai et al. (2016) HSP90 Inhibitor Encapsulated Photo-Theranostic Nanoparticles for Synergistic Combination Cancer Therapy. Theranostics 6:1324-35
Wang, Yan; Xiao, Wenwu; Zhang, Yonghong et al. (2016) Optimization of RGD-Containing Cyclic Peptides against ?v?3 Integrin. Mol Cancer Ther 15:232-40
Xiao, Kai; Li, Yuan-Pei; Wang, Cheng et al. (2015) Disulfide cross-linked micelles of novel HDAC inhibitor thailandepsin A for the treatment of breast cancer. Biomaterials 67:183-93
Zhang, Pengfei; Zam, Azhar; Jian, Yifan et al. (2015) In vivo wide-field multispectral scanning laser ophthalmoscopy-optical coherence tomography mouse retinal imager: longitudinal imaging of ganglion cells, microglia, and Müller glia, and mapping of the mouse retinal and choroidal vasculature. J Biomed Opt 20:126005

Showing the most recent 10 out of 20 publications