Half a million Americans suffer from Parkinson's disease (PD) incurring health cost of $6 billion in a year. There are several other neurological disorders with extremely high cost for treatment, but in this context the focus is on the disorders, which have strong connection to glutamate neurotransmission. Glutamate is the most abundant neurotransmitter in the brain and likely mediates more than 50% of all the synapses. The recent brain research has shown that metabotropic glutamate receptors (mGluRs) are involved in several neurological disorders including PD. Developing highly selective competitive agonists and antagonists for specific mGluR subtypes has been difficult, because of the high conservation of the orthosteric glutamate binding site across members of this receptor family and the restricted structural requirements for pharmacophores that occupy the binding pocket. Lack of specific in vivo imaging agents has limited the precise characterization of the physiological and pathological roles of individual mGluRs thus hampering drug development. Recently several non-competitive structurally diverse mGluR ligands have been published. These ligands, positive, negative and neutral modulators, bind to the allosteric binding sites located in the seven strand transmembrane domain. We have previously synthesized and radiolabeled several allosteric modulators for group I mGluR5 and characterized them as PET imaging ligands in preclinical studies. We have used all these ligands to investigate modulation of glutamatergic and dopaminergic receptor function in mouse, rat and primate PD models. We have shown that deficit in dopamine transporter function, the ultimate biomarker of PD-like degeneration, is accompanied with enhanced expression of mGluR5. mGlu5 receptors are localized postsynaptically providing information of glutamate, which is transported through the synapse. However, glutamate is released from the presynaptic site of the neuron, making presynaptic location equally if not more prominent to investigate neurotransmission. Thus, group III mGlu4 receptors localized presynaptically are important contributors for glutamate neurotransmission, especially since positive allosteric modulators can potentiate orthosteric agonist of mGluR4 to inhibit the release of neurotransmitters such as GABA and thus balance neurotransmission through direct and indirect pathways in PD. However, there is no in vivo imaging ligand available for mGluR4. Our ultimate goal is to synthesize positive allosteric compounds as specific PET imaging ligands for mGluR4. Precisely, we are proposing to synthesize precursors and develop radiolabeling techniques for mGluR4 positive allosteric modulators using 2-pyridylamide derivatives as lead compounds and investigate a role of presynaptic mGluR4 in glutamatergic neurotransmission. Our research effort is to develop imaging ligands for the receptor systems, what are totally lacking of any in vivo imaging approach. The successful accomplishment can open new research strategies for early diagnosis and novel therapies for the disorders, which do not have yet therapy.

Public Health Relevance

Six million people have Parkinson's disease worldwide, half a million of them in the United States incurring health cost of $6 billion in a year. Mostly used treatment in PD is pharmacological therapy with L-dopa. However after 5 yrs use of L-dopa more than 50 % of the patients will develop abnormal involuntary movement called L-dopa induced dyskinesia (LID). It was shown in preliminary studies that mGluRs, especially mGluR4 has inhibitory effect on the development of LID. There is no in vivo imaging ligand for mGluR4. Our goal is to develop PET imaging ligands for mGluR4 and investigate a role of mGluR4 in glutamatergic neurotransmission.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
5R01EB012864-02
Application #
8250276
Study Section
Clinical Molecular Imaging and Probe Development (CMIP)
Program Officer
Liu, Christina
Project Start
2011-04-03
Project End
2015-03-31
Budget Start
2012-04-01
Budget End
2013-03-31
Support Year
2
Fiscal Year
2012
Total Cost
$561,195
Indirect Cost
$242,468
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Jenkins, Bruce G; Zhu, Aijun; Poutiainen, Pekka et al. (2016) Functional modulation of G-protein coupled receptors during Parkinson disease-like neurodegeneration. Neuropharmacology 108:462-73
Kil, Kun-Eek; Poutiainen, Pekka; Zhang, Zhaoda et al. (2016) Synthesis and evaluation of N-(methylthiophenyl)picolinamide derivatives as PET radioligands for metabotropic glutamate receptor subtype 4. Bioorg Med Chem Lett 26:133-9
Poutiainen, Pekka; Jaronen, Merja; Quintana, Francisco J et al. (2016) Precision Medicine in Multiple Sclerosis: Future of PET Imaging of Inflammation and Reactive Astrocytes. Front Mol Neurosci 9:85
Brownell, Anna-Liisa; Kuruppu, Darshini; Kil, Kun-Eek et al. (2015) PET imaging studies show enhanced expression of mGluR5 and inflammatory response during progressive degeneration in ALS mouse model expressing SOD1-G93A gene. J Neuroinflammation 12:217
Zhang, Zhaoda; Kil, Kun-Eek; Poutiainen, Pekka et al. (2015) Re-exploring the N-phenylpicolinamide derivatives to develop mGlu4 ligands with improved affinity and in vitro microsomal stability. Bioorg Med Chem Lett 25:3956-60
Poutiainen, Pekka; Kil, Kun-Eek; Zhang, Zhaoda et al. (2015) Co-operative binding assay for the characterization of mGlu4 allosteric modulators. Neuropharmacology 97:142-8
Choi, Ji-Kyung; Zhu, Aijun; Jenkins, Bruce G et al. (2015) Combined behavioral studies and in vivo imaging of inflammatory response and expression of mGlu5 receptors in schnurri-2 knockout mice. Neurosci Lett 609:159-64
Kuruppu, Darshini; Brownell, Anna-Liisa; Shah, Khalid et al. (2014) Molecular imaging with bioluminescence and PET reveals viral oncolysis kinetics and tumor viability. Cancer Res 74:4111-21
Kil, Kun-Eek; Poutiainen, Pekka; Zhang, Zhaoda et al. (2014) Radiosynthesis and evaluation of an 18F-labeled positron emission tomography (PET) radioligand for metabotropic glutamate receptor subtype 4 (mGlu4). J Med Chem 57:9130-8
Kil, Kun-Eek; Zhu, Aijun; Zhang, Zhaoda et al. (2014) Development of [(123)I]IPEB and [(123)I]IMPEB as SPECT Radioligands for Metabotropic Glutamate Receptor Subtype 5. ACS Med Chem Lett 5:652-6

Showing the most recent 10 out of 14 publications