Angiogenesis imaging holds considerable promise for early detection of cancer, as well as post-therapy assessment of many new molecular-targeted antiangiogenic therapies. New contrast probes such as small molecular radiotracers, optical probes, and lipid- and polymer-based nanoparticles are intensively investigated to target different biomarkers of angiogenesis. However, low tissue concentrations of intended biomarkers, lack of an amplification strategy to increase signal output, and high background signals are several major limiting factors that hamper the advances of these molecular imaging techniques. The long-term goal of this application is to develop a robust set of tunable fluorescent nanoprobes based on the homo fluorescent resonance energy transfer (homoFRET) and photo-induced electron transfer (PET) mechanisms. The micelle nanoprobes will stay silent (or in the OFF state) with minimum background signals under normal physiological conditions (e.g. blood circulation). Upon specific targeting to angiogenic target (e.g. avb3), these nanoprobes can be turned ON by pH activation (pH 5.0-7.2) inside endosomes/lysosomes after receptor-mediated endocytosis. Our central hypothesis is that a synergized strategy of signal amplification in tumor endothelium and background suppression in blood and pH-activatable micelle (pHAM) nanoprobes will be able to improve the imaging sensitivity and specificity of angiogenesis biomarkers in vascularized tumors in vivo. To test this hypothesis, we will carry out the following specific aims: (1) establish a series of near infrared (NIR) pHAM nanoprobes with tunable transition pH (pHt);(2) evaluate the activation of non-targeted pHAM in acidic tumor microenvironment;(3) establish vascular-targeted pHAM and investigate the intracellular activation of these nanoprobes in tumor endothelial cells;(4) evaluate the specificity and efficacy of targeted pHAM in the imaging of distinctive angiogenesis biomarkers (i.e. VEGFR2, avb3) in tumor-bearing mice in vivo. Successful execution of this research will establish pHAM as a valuable imaging platform to image angiogenesis- specific biomarkers on the tumor endothelium in vivo. These nanoprobes may be particularly useful for the efficacy assessment of molecular-targeted antiangiogenic therapies, where the expression levels of the therapeutic targets (e.g. VEGFR2, avb3) can be directly measured.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-SBIB-A (55))
Program Officer
Conroy, Richard
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Texas Sw Medical Center Dallas
Schools of Medicine
United States
Zip Code
Luo, Min; Samandi, Layla Z; Wang, Zhaohui et al. (2017) Synthetic nanovaccines for immunotherapy. J Control Release 263:200-210
Wang, Zhaohui; Luo, Min; Mao, Chengqiong et al. (2017) A Redox-Activatable Fluorescent Sensor for the High-Throughput Quantification of Cytosolic Delivery of Macromolecules. Angew Chem Int Ed Engl 56:1319-1323
Luo, Min; Wang, Hua; Wang, Zhaohui et al. (2017) A STING-activating nanovaccine for cancer immunotherapy. Nat Nanotechnol 12:648-654
Aroh, Chukwuemika; Wang, Zhaohui; Dobbs, Nicole et al. (2017) Innate Immune Activation by cGMP-AMP Nanoparticles Leads to Potent and Long-Acting Antiretroviral Response against HIV-1. J Immunol 199:3840-3848
Zhao, Tian; Huang, Gang; Li, Yang et al. (2016) A Transistor-like pH Nanoprobe for Tumour Detection and Image-guided Surgery. Nat Biomed Eng 1:
Wang, Chensu; Wang, Yiguang; Li, Yang et al. (2015) A nanobuffer reporter library for fine-scale imaging and perturbation of endocytic organelles. Nat Commun 6:8524
Dutchak, Paul A; Laxman, Sunil; Estill, Sandi Jo et al. (2015) Regulation of Hematopoiesis and Methionine Homeostasis by mTORC1 Inhibitor NPRL2. Cell Rep 12:371-9
Ma, Xinpeng; Wang, Yiguang; Zhao, Tian et al. (2014) Ultra-pH-sensitive nanoprobe library with broad pH tunability and fluorescence emissions. J Am Chem Soc 136:11085-92
Li, Yang; Wang, Yiguang; Huang, Gang et al. (2014) Chaotropic-anion-induced supramolecular self-assembly of ionic polymeric micelles. Angew Chem Int Ed Engl 53:8074-8
Wang, Yiguang; Zhou, Kejin; Huang, Gang et al. (2014) A nanoparticle-based strategy for the imaging of a broad range of tumours by nonlinear amplification of microenvironment signals. Nat Mater 13:204-12

Showing the most recent 10 out of 15 publications