Photothermal ablation (PTA) therapy provides a minimally invasive treatment for inoperable tumors. Nanoparticles such as gold nanostructures, along with strong photothermal coupling effect, have been shown to greatly enhance the efficacy of PTA. On the other hand, currently used PTA has several limitations such as less effectiveness in treating metastatic cancer;non-biodegradability of the nanoparticles, and restrictive transport of nanoparticles into tumor interstitium in a poorly perfused tumor site. The restrictive transport likely results in sublethal dose of heat transfer and may cause tumor recurrence and develop resistance. Hollow CuS nanoparticles (HCuSNPs) belong to a new class of photothermal nanoparticles. As shown in our Preliminary Study, HCuSNPs, in contrast to gold analogs, were biodegradable and eliminated through the kidney. We hypothesize that the HCuSNPs provide advanced multimodality photothermal therapeutic approaches for control of tumor recurrence and metastases.
The Specific Aims of this project are: (1) to evaluate metabolism and toxicity of HCuSNPs;(2) to develop HCuSNPs-mediated multistage delivery for cancer photothermal therapy;and (3) to explore HCuSNPs-adjuvant-mediated in situ photoimmunotherapy (ISPI).
In Aim 1, we will examine the cellular fate and metabolism of the PEG-HCuSNPs;and analyze single and repeated dose toxicity of the PEG-HCuSNPs.
In Aim 2, we will use photoacoustic imaging to analyze the stages of tumor delivery of HCuSNPs in mouse tumor xenograft model;and validate the effect of PTA through the multistage delivery.
In Aim 3, we will assess the immune response induced by HCuSNPs-adjuvant-mediated ISPI;and evaluate the local and distal anti-tumor effect. These studies will be performed in xenograft, allograft and spontaneous models of breast cancer. Worldwide, breast cancer is the second most frequently diagnosed malignancy in women. A success in validating the proposed multimodality PTA will provide an important therapeutic strategy not only for primary but also for metastatic breast cancer. Clearly, this technology, in combination with the use of fiberoptics, can be used to treat a broad range of cancers even in deep tissues.

Public Health Relevance

The proposed research aims to develop a novel cancer therapeutic technology. The platform of this technology is nanoparticle-based and has several innovative features: biodegradability, multimodality, and simplicity. In addition to treat primary cancer, this technology will effectively control metastases and prevent recurrence.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
1R01EB018748-01A1
Application #
8649142
Study Section
Nanotechnology Study Section (NANO)
Program Officer
Tucker, Jessica
Project Start
2013-09-30
Project End
2017-08-31
Budget Start
2013-09-30
Budget End
2014-08-31
Support Year
1
Fiscal Year
2013
Total Cost
$315,284
Indirect Cost
$90,284
Name
University of Rhode Island
Department
Pharmacology
Type
Schools of Pharmacy
DUNS #
144017188
City
Kingston
State
RI
Country
United States
Zip Code
02881
Wolosin, J Mario; Ritch, Robert; Bernstein, Audrey M (2018) Is Autophagy Dysfunction a Key to Exfoliation Glaucoma? J Glaucoma 27:197-201
Bernstein, Audrey M; Ritch, Robert; Wolosin, Jose M (2018) Exfoliation Syndrome: A Disease of Autophagy and LOXL1 Proteopathy. J Glaucoma 27 Suppl 1:S44-S53
Marczak, Marek M; Yan, Bingfang (2017) Circadian rhythmicity: A functional connection between differentiated embryonic chondrocyte-1 (DEC1) and small heterodimer partner (SHP). Arch Biochem Biophys 631:11-18
Hu, Jinhua; Mao, Zhao; He, Shuangcheng et al. (2017) Icariin protects against glucocorticoid induced osteoporosis, increases the expression of the bone enhancer DEC1 and modulates the PI3K/Akt/GSK3?/?-catenin integrated signaling pathway. Biochem Pharmacol 136:109-121
Ning, Rui; Zhan, Yunran; He, Shuangcheng et al. (2017) Interleukin-6 Induces DEC1, Promotes DEC1 Interaction with RXR? and Suppresses the Expression of PXR, CAR and Their Target Genes. Front Pharmacol 8:866
Want, Andrew; Gillespie, Stephanie R; Wang, Zheng et al. (2016) Autophagy and Mitochondrial Dysfunction in Tenon Fibroblasts from Exfoliation Glaucoma Patients. PLoS One 11:e0157404
Li, Yajuan; Scott, Julie; Chen, Yi-Tzai et al. (2015) Direct Dry-Grinding Synthesis of Monodisperse Lipophilic CuS Nanoparticles. Mater Chem Phys 162:671-676
Guo, Liangran; Yan, Daisy D; Yang, Dongfang et al. (2014) Combinatorial photothermal and immuno cancer therapy using chitosan-coated hollow copper sulfide nanoparticles. ACS Nano 8:5670-81
Guo, Liangran; Panderi, Irene; Yan, Daisy D et al. (2013) A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano 7:8780-93
Xiao, Da; Yang, Dongfang; Guo, Liangran et al. (2013) Regulation of carboxylesterase-2 expression by p53 family proteins and enhanced anti-cancer activities among 5-fluorouracil, irinotecan and doxazolidine prodrug. Br J Pharmacol 168:1989-99