There has been great progress in the use of functional connectivity measures to study the healthy and dis- eased brain. The fMRI community has now realized that assessment of functional connectivity has been limited by an implicit assumption of spatial and temporal stationarity throughout the measurement period. Dynamics are potentially even more prominent in the resting-state, during which mental activity is unconstrained. There is a need for new methods to both estimate and quantify these changes. We propose to develop and compare a diverse but unified family of multivariate methods to address important aspects of dynamic connectivity that are not presently captured with existing approaches. Pilot data with initial approaches show robust changes in mental illness. Using a powerful framework that builds on the well-structured framework of joint blind source separation, we will make use of all available prior and statistical information-higher-order-statistics, sparsity, smoothness, sample and dataset dependence to derive a class of novel and effective dynamic models for full characterization of static and dynamic brain connectivity. We will validate these new methods while determining their properties and robustness to noise and other factors. We show preliminary work suggesting that there are important changes in dynamic properties that are not detectable in the static results and vice versa. Thus, we also propose models that can simultaneously capture stationary and non-stationary activity. We will apply our new set of methods to evaluate the common and distinct aspects of two patient groups (schizophrenia and bipolar disorder) as well as comorbid conditions (smoking and drinking). We will provide open source tools and release data throughout the duration of the project via a web portal and the NITRC repository, hence enabling other investigators to compare their own methods with our own as well as to apply them to a large variety of brain disorders. Our tools have wide application to the study of the healthy brain as well as many other diseases such as Alzheimer's and attention deficit hyperactivity disorder. 37

Public Health Relevance

There is considerable interest in approaches that capture time-varying connectivity, however existing approaches are largely ad-hoc and hard to compare with one another. Existing approaches have shown consider- able promise, but no method currently provides a comprehensive view of the time-varying changes we know exist. For example, most studies focus on time-varying correlation but ignore time-varying nodes. Most approaches produce state matrices, but it's not clear how to relate these or even if they are meaningful. Multivariate methods are well suited to estimate the changes of interested in a unified and robust manner but such tools are still in their infancy. We thus propose to develop and validate a family of multivariate methods to estimate dynamic connectivity states (CS) and use these methods to study CS in overlapping psychosis patients (schizophrenia/bipolar disorder) and comorbid conditions (smoking/drinking). Our tools have wide application to the study of the healthy brain as well as many other diseases such as Alzheimer's and attention deficit hyperactivity disorder.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Duan, Qi
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
The Mind Research Network
United States
Zip Code
Xie, Hua; Calhoun, Vince D; Gonzalez-Castillo, Javier et al. (2018) Whole-brain connectivity dynamics reflect both task-specific and individual-specific modulation: A multitask study. Neuroimage 180:495-504
Vergara, Victor M; Yu, Qingbao; Calhoun, Vince D (2018) A method to assess randomness of functional connectivity matrices. J Neurosci Methods 303:146-158
Wu, Lei; Caprihan, Arvind; Bustillo, Juan et al. (2018) An approach to directly link ICA and seed-based functional connectivity: Application to schizophrenia. Neuroimage 179:448-470
Bridwell, David A; Cavanagh, James F; Collins, Anne G E et al. (2018) Moving Beyond ERP Components: A Selective Review of Approaches to Integrate EEG and Behavior. Front Hum Neurosci 12:106
Bao, Chunhui; Liu, Peng; Liu, Huirong et al. (2018) Difference in regional neural fluctuations and functional connectivity in Crohn's disease: a resting-state functional MRI study. Brain Imaging Behav 12:1795-1803
Yaesoubi, Maziar; Adal?, Tülay; Calhoun, Vince D (2018) A window-less approach for capturing time-varying connectivity in fMRI data reveals the presence of states with variable rates of change. Hum Brain Mapp 39:1626-1636
Agcaoglu, O; Miller, R; Damaraju, E et al. (2018) Decreased hemispheric connectivity and decreased intra- and inter- hemisphere asymmetry of resting state functional network connectivity in schizophrenia. Brain Imaging Behav 12:615-630
Allen, E A; Damaraju, E; Eichele, T et al. (2018) EEG Signatures of Dynamic Functional Network Connectivity States. Brain Topogr 31:101-116
Mennigen, Eva; Miller, Robyn L; Rashid, Barnaly et al. (2018) Reduced higher-dimensional resting state fMRI dynamism in clinical high-risk individuals for schizophrenia identified by meta-state analysis. Schizophr Res 201:217-223
Hjelm, R Devon; Damaraju, Eswar; Cho, Kyunghyun et al. (2018) Spatio-Temporal Dynamics of Intrinsic Networks in Functional Magnetic Imaging Data Using Recurrent Neural Networks. Front Neurosci 12:600

Showing the most recent 10 out of 66 publications