The vast majority of current therapeutic agents function by binding to disease-associated macromolecules and modulating their activity. Recent developments, however, have made increasingly realistic the possibility of developing next-generation therapeutics that do not simply bind targets implicated in disease, but instead alter the covalent structure of genes and gene products in ways that can more effectively treat-or even cure-many diseases. While the possibility of precisely manipulating genes and proteins in mammalian cells and, eventually, in humans, has enormous potential, several major challenges must be overcome to fully realize this vision. Perhaps the most significant of these challenges is the efficient creation of the macromolecules that are needed to alter genomes or proteomes with a high degree of selectivity and potency. To realize a vision in which arbitrary genes or proteins can be manipulated in mammalian cells to treat disease thus requires new approaches to rapidly generating macromolecules with precise, tailor-made properties. During the last granting period, we developed a system that enables proteins to evolve continuously in the laboratory, requiring virtually no researcher intervention. The resulting system, phage-assisted continuous evolution (PACE), allows proteins to undergo directed evolution at a rate ~100-fold faster than conventional methods. In the first applications of PACE, we rapidly evolved RNA polymerases with dramatically different DNA promoter specificities. We also identified the vulnerabilities of drug candidates to the evolution of drug resistance by using PACE to evolve proteases that are resistant to HCV protease inhibitors currently used in human clinical trials. In addition, we developed important PACE capabilities beyond basic positive selection, including small- molecule modulation of selection stringency and negative selection against undesired activities. These initial studies established PACE as a robust and general platform to evolve proteins with tailor-made properties at an unprecedented speed. In the next granting period, we propose to apply these developments to continuously evolve four classes of proteins or RNAs, each with the ability to manipulate the covalent structure of genes or gene products, and each with potential relevance to the development of next-generation human therapeutics: recombinase enzymes that insert DNA of interest into safe-harbor loci in the human genome, proteases that specifically cleave disease- associated proteins, orthogonal Cas9 (CRISPR) nucleases with altered PAM specificities and enhanced activities, and smart Cas9 guide RNAs that mediate genome engineering only in those cells that are in specific disease-associated cell states. Success would establish the novel therapeutic potential of these proteins and RNAs to address a wide range of human diseases, including many human genetic disorders.

Public Health Relevance

We recently developed a method to evolve proteins continuously in the laboratory for the first time, enabling evolution at a rate 100-fold faster tha that of traditional laboratory evolution methods. We propose to use this method to generate highly evolved proteins that precisely modify the structure of genes and gene products implicated in human disease. The resulting proteins have the potential to serve as next-generation protein therapeutics to treat human diseases including genetic disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
9R01EB022376-10
Application #
8962813
Study Section
Therapeutic Approaches to Genetic Diseases Study Section (TAG)
Program Officer
Rampulla, David
Project Start
2002-04-01
Project End
2020-01-31
Budget Start
2016-02-01
Budget End
2017-01-31
Support Year
10
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Harvard University
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
082359691
City
Cambridge
State
MA
Country
United States
Zip Code
Woolston, Benjamin M; Roth, Timothy; Kohale, Ishwar et al. (2018) Development of a formaldehyde biosensor with application to synthetic methylotrophy. Biotechnol Bioeng 115:206-215
Shen, Max W; Arbab, Mandana; Hsu, Jonathan Y et al. (2018) Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563:646-651
Hu, Johnny H; Miller, Shannon M; Geurts, Maarten H et al. (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57-63
Komor, Alexis C; Badran, Ahmed H; Liu, David R (2018) Editing the Genome Without Double-Stranded DNA Breaks. ACS Chem Biol 13:383-388
Lee, Hye Kyung; Willi, Michaela; Miller, Shannon M et al. (2018) Targeting fidelity of adenine and cytosine base editors in mouse embryos. Nat Commun 9:4804
Koblan, Luke W; Doman, Jordan L; Wilson, Christopher et al. (2018) Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction. Nat Biotechnol 36:843-846
Gao, Xue; Tao, Yong; Lamas, Veronica et al. (2018) Treatment of autosomal dominant hearing loss by in vivo delivery of genome editing agents. Nature 553:217-221
Krishnan, Yamini; Rees, Holly A; Rossitto, Christina P et al. (2018) Green fluorescent proteins engineered for cartilage-targeted drug delivery: Insights for transport into highly charged avascular tissues. Biomaterials 183:218-233
Wang, Tina; Badran, Ahmed H; Huang, Tony P et al. (2018) Continuous directed evolution of proteins with improved soluble expression. Nat Chem Biol 14:972-980
Rees, Holly A; Liu, David R (2018) Base editing: precision chemistry on the genome and transcriptome of living cells. Nat Rev Genet 19:770-788

Showing the most recent 10 out of 27 publications