Microelectrodes are popular for sensing real-time changes in neurotransmitters and understanding the dynamics of neurotransmission in the brain. However, technology has changed little in three decades and there are many unmet technological needs for in vivo electrochemical sensors. In particular, electrodes are needed with high selectivity to discriminate different molecules, small enough tips to localize in small model organisms, and geometries that enable global sensing at high temporal resolution. One new electrode is unlikely to solve all these problems; instead, the electrochemical tool-kit needs to be expanded with many types of electrode designs, materials, and fabrication strategies so that electrodes can be customized for the application. The long term goal of my lab is to develop new electrodes for the measurement of real-time changes of neurotransmitters in vivo and use them to understand real-time detection of neurotransmitter dynamics in the brain. The goal of this project is to develop carbon nanomaterial electrodes, carbon nanopipettes, and 3D printed electrodes with tunable selectivity, tip diameter, and geometry. In the first specific aim, we will use carbon nanomaterials, surface treatments, custom waveforms, and imaging-based software approaches to tune the oxidation of difficult to detect molecules and reduce biofouling. Discrimination and co-detection of histamine, adenosine, and hydrogen peroxide will be targeted, as well as reduced fouling by serotonin and its metabolites. In the second aim, carbon nanopipettes will be developed as nanoelectrodes with tunable tip diameters that can sample from submicron regions, facilitating measurements in small Drosophila brain regions without destroying the tissue. Different geometries will be compared, included closed-tip, cavity, and open tube pipettes. In the third aim, a completely new way to make an electrode will be explored: nano-3D printing. A Nanoscribe 3D printer with 500 nm printing resolution will be used and designs then oxygen/argon annealed, which causes shrinking and carbonization. This 3D printing technique will enable rational design of free-standing, high temporal resolution sensors and flexible carbon mesh electrodes that measure neurotransmitters more globally. The result of this project will be many different kinds of electrodes that enable many different neurochemical applications, from discriminating adenosine and histamine transients in vivo, to dopamine detection in discrete Drosophila regions that are less than 10 ?m wide, to rapid measurements of neurotransmission on a global scale. The significance of this project is that it will transform in vivo microelectrode design to facilitate complex dynamic measurements of neurochemistry that will lead to a better understanding of the how the brain functions and how if malfunctions during disease. The expected positive impact of this new electrode design is thus new platforms of electrodes with tunable electrochemistry to better understand real-time neurotransmission.

Public Health Relevance

The proposed research will design new electrodes to provide real-time monitoring of neurotransmitters. It is important to understand the time course of neurotransmission in order to understand how the brain works and how it malfunctions during neurological diseases. New electrodes with tunable sensitivity, selectivity, and size will thus provide new insight into the basic mechanisms of chemical communication in the brain.

Agency
National Institute of Health (NIH)
Institute
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Type
Research Project (R01)
Project #
1R01EB026497-01
Application #
9578661
Study Section
Bioengineering of Neuroscience, Vision and Low Vision Technologies Study Section (BNVT)
Program Officer
Selimovic, Seila
Project Start
2018-07-01
Project End
2022-03-31
Budget Start
2018-07-01
Budget End
2019-03-31
Support Year
1
Fiscal Year
2018
Total Cost
Indirect Cost
Name
University of Virginia
Department
Chemistry
Type
Schools of Arts and Sciences
DUNS #
065391526
City
Charlottesville
State
VA
Country
United States
Zip Code
22904
Zestos, Alexander G; Venton, B Jill (2018) Communication-Carbon Nanotube Fiber Microelectrodes for High Temporal Measurements of Dopamine. J Electrochem Soc 165:G3071-G3073