Complicated and costly robot assisted surgery (RAS) training results in less frequent use of this technology in several complex areas of surgery, and consequently ends up in harm. RAS requires a unique blend of skills in addition to manual competence with human-machine interaction skills, while operating remotely from patient with no tactile feedback. To address this challenge, numerous studies have focused on simulation-based robotic training curricula, like Fundamental Skills of Robotic Surgery (FSRS), to develop and assess the performance level of the surgeon operator. However, such training tools were developed based on metrics measured by performance on a simulator and other subjectively evaluated metrics. The goal of this research proposal is to develop a tool for objective RAS skill assessment and a model for performance monitoring. We hypothesize that brain dynamics - Electroencephalogram (EEG) - and eye movement behavior are able to detect change of skill level and the level of surgeon?s performance. To validate this hypothesis, we will record EEG signals and eye movement time series from subjects with different RAS expertise levels. Ten novices, 5 beginners, 5 advanced beginners, and 5 expert surgeons will be included in the study and continuously perform four levels of designed RAS training tasks on surgical robot simulator, dry lab, and animal lab during one year; (1) performing six basic tasks on surgical simulator. All subjects will practice these tasks during two weekly sessions and each practice session takes 2 hours. (2) Subjects will practice 3 tasks of peg transfer, pattern cutting, and suturing on dry lab. (3) Subjects will practice 2 tasks (anastomosis and dissection) on animal tissue and also on plastic models. (4) Subjects will practice two operations of nephrectomy and hysterectomy on animal lab, 2 operations in each session, and each session takes 3 hours and occurs every other week. Two master surgeons will subjectively evaluate performance of subjects (all 25 subjects; Score scale: 1-20) and expertise level (four categories) in performing the designed tasks, every practice session. Master surgeons evaluate surgeon?s skill and performance throughout task and notify change of skill level and performance through time. We will then develop a ?deep convolutional neural network? algorithm trained by EEG and eye movement time series through running windows with equal size, to classify subject skill level into four categories of a novice, beginner, advanced beginner, and expert. We will also use network neuroscience techniques to extract engineered features from EEG and eye movement data and use them for training a regression algorithm to develop a model for performance level prediction. Ultimately, the developed objective skill evaluation tool and performance monitoring model will make RAS training more efficient by providing feedback to the trainee regarding his/her skills and directing him/her to focus on skills needed improvement. These improvements will result in more frequent use of RAS in complex surgical areas and ultimately lead to patient safety.

Public Health Relevance

The use of robot-assisted surgery (RAS) has offered advantages for surgeons and patients, yet there is no clinically practical tool for objective evaluation of subject?s expertise level and performance. The overall objective of this research is to develop a tool for objective RAS skill assessment and a model for performance monitoring, leading to optimized RAS training process, improved patient safety and surgical outcomes.

National Institute of Health (NIH)
National Institute of Biomedical Imaging and Bioengineering (NIBIB)
Research Project (R01)
Project #
Application #
Study Section
Bioengineering, Technology and Surgical Sciences Study Section (BTSS)
Program Officer
Shabestari, Behrouz
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Roswell Park Cancer Institute Corp
United States
Zip Code