Individual responses to ozone vary widely with some individuals having a much lower threshold of ozone sensitivity for pulmonary toxicity. Therefore, a complex of individual genetic factors likely controls the transmission and propagation of oxidant signaling following ozone exposure. Epidemiologic studies support the role of the wild-type NADPH quinone oxidoreductase1 (NQO1) genotype as an asthma susceptibility factor in the presence of ozone. NQO1 catalyzes the obligate 2-electron reduction of quinones and is considered an intracellular antioxidant. Our preliminary data demonstrate that NQO1 is required for ozone-induced IL-8/ KC expression, increased neutrophilic airway inflammation, and airway hyperresponsiveness in mice. This poses a conundrum to explain how an oxidoreductase that recycles antioxidants propagates ROS signaling linking oxidant stress to an inflammatory response. We will use primary human airway epithelial cells and mouse (wild-type and NQO1-null) model systems to test the following unprecedented hypothetical mechanism to explain how NQO1 links oxidant stress to epithelial inflammation: NQO1 and ozone-generated ROS are central regulators of airway inflammation following ozone exposure. We propose that NQO1 regulates the intracellular redox environment resulting in a shift in the balance of isoprostanes (isoP). In the presence of NQO1, ROS and F2-isoP activate NF-(B, resulting in increased IL-8/ KC expression and increased neutrophilic inflammation. In the absence of NQO1, the cell favors A2-isoP production, which inhibits NF-(B activation, causing the paradoxical effect of blocking IL-8/ KC expression and neutrophilic inflammation.
The specific aims are:
Aim 1 a: To determine whether following ozone exposure, NQO1 mediates neutrophilic inflammation and airway hyperresponsiveness via upregulation of the neutrophil chemokines KC/ IL-8.
Aim 1 b: To determine whether NQO1 expression in structural airway epithelial cells and/or in hematopoetic cells is required for pulmonary responses to ozone.
Aim 2 a: To determine whether NQO1 alters the cellular redox state, inducing a relative reducing environment as determined by levels of reduced: oxidized (-tocopherol, reduced: oxidized ubiquinone and reduced: oxidized glutathione.
Aim 2 b: To determine whether following ozone exposure, NQO1 causes a shift in isoprostane production with a relative increase in F2- isoP formation and conversely, a loss of NQO1 in vivo, causes increased formation of A2-isoP.
Aim 3 a: To determine whether following ozone exposure, F2-isoP and/or ozone-generated ROS upregulate IL-8/KC expression by NF-(B activation.
Aim 3 b: To determine whether this regulation is abrogated in the absence of NQO1 by A2-isoP inhibition of NF-(B release from I(B.

Public Health Relevance

Ozone is an environmental health threat to vulnerable populations including patients with chronic cardiopulmonary disease. We propose that a candidate for a genetic susceptibility factor related to ozone-induced pulmonary toxicity is NADPH quinone oxidoreductase 1 (NQO1). We hypothesize that NQO1 functions as a gate-keeper in airway epithelial cells to transmit ozone-generated oxidant stress to an inflammatory response which causes ozone-triggered airway disease.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-CVRS-H (02))
Program Officer
Nadadur, Srikanth
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Duke University
Schools of Medicine
United States
Zip Code
Griffin, Kathryn L; Fischer, Bernard M; Kummarapurugu, Apparao B et al. (2014) 2-O, 3-O-desulfated heparin inhibits neutrophil elastase-induced HMGB-1 secretion and airway inflammation. Am J Respir Cell Mol Biol 50:684-9
Kelly, Francine L; Sun, Jesse; Fischer, Bernard M et al. (2014) Diacetyl induces amphiregulin shedding in pulmonary epithelial cells and in experimental bronchiolitis obliterans. Am J Respir Cell Mol Biol 51:568-74
Kummarapurugu, Apparao B; Fischer, Bernard M; Zheng, Shuo et al. (2013) NADPH:quinone oxidoreductase 1 regulates host susceptibility to ozone via isoprostane generation. J Biol Chem 288:4681-91
Fischer, Bernard M; Wong, Jessica K; Degan, Simone et al. (2013) Increased expression of senescence markers in cystic fibrosis airways. Am J Physiol Lung Cell Mol Physiol 304:L394-400
Meyer, Marisa L; Potts-Kant, Erin N; Ghio, Andrew J et al. (2012) NAD(P)H quinone oxidoreductase 1 regulates neutrophil elastase-induced mucous cell metaplasia. Am J Physiol Lung Cell Mol Physiol 303:L181-8
Fischer, Bernard M; Pavlisko, Elizabeth; Voynow, Judith A (2011) Pathogenic triad in COPD: oxidative stress, protease-antiprotease imbalance, and inflammation. Int J Chron Obstruct Pulmon Dis 6:413-21
Voynow, Judith A; Kummarapurugu, Apparao (2011) Isoprostanes and asthma. Biochim Biophys Acta 1810:1091-5
Voynow, Judith A; Fischer, Bernard M; Zheng, Shuo et al. (2009) NAD(P)H quinone oxidoreductase 1 is essential for ozone-induced oxidative stress in mice and humans. Am J Respir Cell Mol Biol 41:107-13
Fischer, Bernard M; Domowicz, Denise A Lopez; Zheng, Shuo et al. (2009) Neutrophil elastase increases airway epithelial nonheme iron levels. Clin Transl Sci 2:333-9