8-oxo-7,8-dihydroguanine (8-oxoG), often used as a marker of oxidative stress, is generated in nucleic acids by environmental and endogenous reactive oxygen species (ROS). It is a premutagenic lesion in DNA because of its mispairing potential with adenine during replication. The base 8-oxoG is removed from the DNA by 8-oxoG DNA glycosylase 1 (OGG1) in the DNA base excision repair (BER) pathway. Decreased repair and resulting accumulation of 8-oxoG have been related to various human diseases and aging, although its etiological role is poorly understood. Inflammation is the root of most diseases including those of the respiratory, cardiovascular, central nervous systems and of carcinogenesis. Ragweed pollen extract (RWPE: has pro-oxidant and antigenic components) increases the 8-oxoG level in the genome and OGG1 activity in the mouse airways. Downregulation of OGG1 (but not of other oxidized-base specific DNA glycosylases) in the lungs of sensitized mice before RWPE exposure significantly decreased allergic airway inflammation. Importantly, EG8-oxoG (extragenomic 8-oxoG) alone induced chemokine expression in mouse lungs, along with neutrophil accumulation. Our data also show that EG8-oxoG increased the levels of 1) activated small GTPases;2) Ras to Raf-1 binding;and phosphorylation of 3) MEK1,2;4) ERK1,2;and 5) RelA-Ser276. EG8-oxoG induced luciferase expression driven from the CXCL-8 promoter. Notably, other oxidized purine bases had no such effects. These unexpected observations led us to hypothesize that 8-oxoG liberated from DNA by OGG1 functions as a signaling molecule by virtue of its ability to increase levels of activated small GTPases, thereby initiating cascades of cellular activation events leading to increased pro-inflammatory mediator expression and exacerbation of inflammation. We will test this hypothesis by pursuing three Specific Aims. We will investigate whether:
Aim 1) deficiency in 8-oxoG repair renders mice refractory to inflammation;
Aim 2) OGG1's glycosylase activity is post-translationally modulated for release of EG8-oxoG from DNA;
and Aim 3) EG8-oxoG enhances expression of pro-inflammatory mediators via NF-?B, activated by the Ras-Raf-MEK/ERK- MSK1 pathway. A mouse disease model for lung inflammation will be used to establish the etiological relevance of our results generated in cultured cells. Completion of these aims will provide the first evidence that EG8-oxoG is the link between oxidative stress- mediated DNA damage/repair and cellular responses, by acting as a signaling molecule inducing pro- inflammatory chemokine expression. Our mechanistic studies should also lay the foundation for novel therapeutic approaches. For example, drugs that trap, scavenge, or convert EG8-oxoG into a non-signaling form should be beneficial for the prevention of inflammatory processes not only in airways, but also in cardiovascular, and central nervous systems or in obesity-associated inflammatory diseases, among others.

Public Health Relevance

Respiratory diseases affect >eight hundred million people worldwide, and in the US there are approximately twenty million outpatient visits, two million emergency room visits, and half million hospitalization per year related to these diseases. Our novel observations linking oxidative genome damage repair to inflammation and subsequently identifying its molecular mechanism provide an opportunity to explore unconventional preventive therapeutic approaches to inhibit inflammation and thereby subsequent pathogenesis.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES018948-03
Application #
8217167
Study Section
Lung Cellular, Molecular, and Immunobiology Study Section (LCMI)
Program Officer
Reinlib, Leslie J
Project Start
2010-04-15
Project End
2015-01-31
Budget Start
2012-02-01
Budget End
2013-01-31
Support Year
3
Fiscal Year
2012
Total Cost
$306,727
Indirect Cost
$106,252
Name
University of Texas Medical Br Galveston
Department
Microbiology/Immun/Virology
Type
Schools of Medicine
DUNS #
800771149
City
Galveston
State
TX
Country
United States
Zip Code
77555
Wang, Ruoxi; Hao, Wenjing; Pan, Lang et al. (2018) The roles of base excision repair enzyme OGG1 in gene expression. Cell Mol Life Sci 75:3741-3750
Ba, Xueqing; Boldogh, Istvan (2018) 8-Oxoguanine DNA glycosylase 1: Beyond repair of the oxidatively modified base lesions. Redox Biol 14:669-678
Hao, Wenjing; Qi, Tianyang; Pan, Lang et al. (2018) Effects of the stimuli-dependent enrichment of 8-oxoguanine DNA glycosylase1 on chromatinized DNA. Redox Biol 18:43-53
Wang, Haibo; Dharmalingam, Prakash; Vasquez, Velmarini et al. (2017) Chronic oxidative damage together with genome repair deficiency in the neurons is a double whammy for neurodegeneration: Is damage response signaling a potential therapeutic target? Mech Ageing Dev 161:163-176
German, Peter; Saenz, David; Szaniszlo, Peter et al. (2017) 8-Oxoguanine DNA glycosylase1-driven DNA repair-A paradoxical role in lung aging. Mech Ageing Dev 161:51-65
Pan, Lang; Hao, Wenjing; Zheng, Xu et al. (2017) OGG1-DNA interactions facilitate NF-?B binding to DNA targets. Sci Rep 7:43297
Ke, Yueshuang; Han, Yanlong; Guo, Xiaolan et al. (2017) PARP1 promotes gene expression at the post-transcriptiona level by modulating the RNA-binding protein HuR. Nat Commun 8:14632
Hosoki, Koa; Itazawa, Toshiko; Boldogh, Istvan et al. (2016) Neutrophil recruitment by allergens contribute to allergic sensitization and allergic inflammation. Curr Opin Allergy Clin Immunol 16:45-50
Bacsi, Attila; Pan, Lang; Ba, Xueqing et al. (2016) Pathophysiology of bronchoconstriction: role of oxidatively damaged DNA repair. Curr Opin Allergy Clin Immunol 16:59-67
Hosoki, Koa; Aguilera-Aguirre, Leopoldo; Brasier, Allan R et al. (2016) Facilitation of Allergic Sensitization and Allergic Airway Inflammation by Pollen-Induced Innate Neutrophil Recruitment. Am J Respir Cell Mol Biol 54:81-90

Showing the most recent 10 out of 59 publications