The objective of this project is to define key parameters involved in transgenerational inheritance of alterations in the function of the mammalian immune system that occur as a result of environmental exposure. The immune system is fundamentally important to public and individual health, and even slight modifications in its function can have a profoundly negative impact on health and disease. For instance, influenza virus infections pose significant global health threats, infecting over 1 billion people annually. Evidence points to prenatal and early life exposure to pollutants as overlooked contributors to poorer clinical outcomes following influenza and other respiratory infections. One family of environmental agents for which there is evidence that developmental exposure affects the function of the immune system in humans and animal models is aryl hydrocarbon receptor (AhR) ligands. For instance, early life exposure to the prototype AhR ligand, 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin (TCDD) profoundly disrupts the response of specific lymphocyte subsets to infection in the F1 generation, and exciting pilot data reveal that lymphocyte function is affected in F2 offspring. Other preliminary data support the idea that these changes are due, at least in part, to alterations in DNA methylation. Moreover, TCDD causes transgenerational (F3) effects and altered DNA methylation in other organ systems. Using contemporary, sensitive assays that directly relate to disease outcome, we will further characterize an integrated set of disease-specific T cell responses in the F3 generation, and directly compare these changes to the modified anti-viral immune response observed in F2 and F1 offspring. This comprehensive analysis will include defining the dose-dependent nature of transgenerational effects on T cell functions, and establishing the ligand-specific nature of immune function changes across generations. We will also define the developmental window of susceptibility, basis of sex differences, and role of parental origin in transgenerational inheritance of altered immunity to viral infection. Moreover, we will investigate the mechanism by which AhR ligand exposure transmits aberrant immune function from one generation to the next. We will identify genes and gene networks that are altered in a transgenerational manner using genetic, pathway-specific and genome-wide approaches, and link these changes to alterations in DNA methylation and other epigenetic regulatory mechanisms. The new scientific information generated will have a tremendous impact on public health. Few studies of transgenerational inheritance of the effects of environmental exposures have considered the immune system, or directly evaluated the potential consequences to a disease that affects at least 1 in 7 people each year. Given that TCDD and other AhR ligands cause developmental and transgenerational effects in other tissues, findings from our studies will have a broad impact on efforts to better predict the potential for AhR and its myriad ligands to impinge on many facets of human development and health.

Public Health Relevance

Recent studies reveal that exposure to pollutants can cause transgenerational changes in biological processes and contribute to disease;however, very little of this research has focused on transgenerational epigenetic inheritance of changes in immune function. The proposed research will direct address this deficit, and will study how a family of common pollutants perturbs the development and function of the immune system across generations.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES023260-02
Application #
8728235
Study Section
Special Emphasis Panel (ZES1-SET-J (TG))
Program Officer
Chadwick, Lisa
Project Start
2013-09-01
Project End
2018-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$588,565
Indirect Cost
$205,135
Name
University of Rochester
Department
Public Health & Prev Medicine
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Boule, Lisbeth A; Burke, Catherine G; Jin, Guang-Bi et al. (2018) Aryl hydrocarbon receptor signaling modulates antiviral immune responses: ligand metabolism rather than chemical source is the stronger predictor of outcome. Sci Rep 8:1826
Franchini, Anthony M; Lawrence, B Paige (2018) Environmental exposures are hidden modifiers of anti-viral immunity. Curr Opin Toxicol 10:54-59
Yee, Min; Domm, William; Gelein, Robert et al. (2017) Alternative Progenitor Lineages Regenerate the Adult Lung Depleted of Alveolar Epithelial Type 2 Cells. Am J Respir Cell Mol Biol 56:453-464
De Jesús Andino, Francisco; Lawrence, B Paige; Robert, Jacques (2017) Long term effects of carbaryl exposure on antiviral immune responses in Xenopus laevis. Chemosphere 170:169-175
Jusko, Todd A; De Roos, Anneclaire J; Lee, Sue Y et al. (2016) A Birth Cohort Study of Maternal and Infant Serum PCB-153 and DDE Concentrations and Responses to Infant Tuberculosis Vaccination. Environ Health Perspect 124:813-21
Yee, Min; Gelein, Robert; Mariani, Thomas J et al. (2016) The Oxygen Environment at Birth Specifies the Population of Alveolar Epithelial Stem Cells in the Adult Lung. Stem Cells 34:1396-406
Hessel, Ellen V S; Ezendam, Janine; van Broekhuizen, Fleur A et al. (2016) Assessment of recent developmental immunotoxicity studies with bisphenol A in the context of the 2015 EFSA t-TDI. Reprod Toxicol 65:448-456
Jusko, Todd A; Oktapodas, Marina; Palkovi?ová Murinová, L'ubica et al. (2016) Demographic, Reproductive, and Dietary Determinants of Perfluorooctane Sulfonic (PFOS) and Perfluorooctanoic Acid (PFOA) Concentrations in Human Colostrum. Environ Sci Technol 50:7152-62
Reilly, Emma C; Martin, Kyle C; Jin, Guang-bi et al. (2015) Neonatal hyperoxia leads to persistent alterations in NK responses to influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 308:L76-85
Boule, Lisbeth A; Burke, Catherine G; Fenton, Bruce M et al. (2015) Developmental Activation of the AHR Increases Effector CD4+ T Cells and Exacerbates Symptoms in Autoimmune Disease-Prone Gnaq+/- Mice. Toxicol Sci 148:555-66

Showing the most recent 10 out of 17 publications