The lung is constantly exposed to biological toxins including lipopolysaccharide (LPS or endotoxin) that activate Toll-like receptor (TLR) signaling, thereby inducing potentially injurious inflammation that can contribute to many diseases including COPD, allergy, and cancer. While these environmental agents are ubiquitous in the environment, unless the exposures are severe or there is some underlying condition, they don't in general induce disease. This suggests the existence of a dampening mechanism(s) that prevents inflammation. One such mechanism is the production of negatively acting alternative mRNA splice forms in the TLR signaling pathway. Prolonged environmental exposure to LPS induces the production of these negatively acting splice forms. Thus we hypothesize a generalized dampening system for TLR signaling in the lung that involves alternative pre-mRNA splicing to generate inhibitory molecules that limit the extent of pro-inflammatory responses induced by LPS. Despite the identification of many negatively acting alternative splicing events in the TLR signaling pathway, there has been no mechanistic study of how this alternative splicing is regulated or how to best utilize this information to treat LPS-induced disease. Our preliminary studies have now identified two factors that modulate alternative splicing in the TLR signaling pathway. One factor is components of the core splicing machinery including the SF3a complex, which functions with the rest of the spliceosome to control mRNA splicing. Surprisingly, there is substantial specificity of SF3a for alternative splicing in the TLR signalin pathway. The other factor is components of the TLR signaling pathway itself. The overall goal of this proposal is to investigate the mechanistic relationship between LPS exposure, TLR signaling, and alternative pre-mRNA splicing in the TLR pathway. To achieve this goal, we propose to investigate (1) how the TLR signaling pathway mediates the effects of LPS on alternative mRNA splicing, (2) how SF3a and the core spliceosome mediates the effects of LPS on alternative mRNA splicing, and (3) how the TLR signaling pathway and core splicing machinery interact to affect LPS- induced alternative splicing. These mechanistic studies will pave the way for harnessing this negative feedback loop to treat LPS-induced inflammatory disease.

Public Health Relevance

Exposure to biological toxins including lipopolysaccharide contributes to numerous inflammatory diseases including COPD, allergy, cancer, Crohn's disease, and many others. We have identified a pathway that limits the inflammatory response induced by LPS; the goal of this proposal is to identify the key mechanisms used by this pathway to regulate LPS-induced inflammation, which could help with the diagnosis and treatment of many inflammatory diseases.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Project (R01)
Project #
Application #
Study Section
Systemic Injury by Environmental Exposure (SIEE)
Program Officer
Humble, Michael C
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
National Jewish Health
United States
Zip Code
Lee, Frank Fang-Yao; Alper, Scott (2018) Functional Genomics in Murine Macrophages. Methods Mol Biol 1809:289-298
Apfeld, Javier; Alper, Scott (2018) What Can We Learn About Human Disease from the Nematode C. elegans? Methods Mol Biol 1706:53-75
Mubarak, Reem Al; Roberts, Nicole; Mason, Robert J et al. (2018) Comparison of pro- and anti-inflammatory responses in paired human primary airway epithelial cells and alveolar macrophages. Respir Res 19:126
Pollyea, Daniel A; Hedin, Brenna R; O'Connor, Brian P et al. (2018) Monocyte function in patients with myelodysplastic syndrome. J Leukoc Biol 104:641-647
Blumhagen, Rachel Z; Hedin, Brenna R; Malcolm, Kenneth C et al. (2017) Alternative pre-mRNA splicing of Toll-like receptor signaling components in peripheral blood mononuclear cells from patients with ARDS. Am J Physiol Lung Cell Mol Physiol 313:L930-L939