Public health interventions routinely target upstream determinants of health (e.g., social or environmental factors) to advance the health of populations. Even though such interventions are corner- stones of public health policy, methods for causal inference to evaluate their effectiveness are limited by a current focus on clinical investigations of individual-level therapies. One highly contentious example is the suite of reg- ulatory policies designed to reduce pollution-related health burden by limiting harmful emissions from US power plants. Unlike in clinical settings, comparing the effectiveness of these regulatory interventions is challenged by the fact that pollution emissions evolve throughout the atmosphere, rendering pollution and health outcomes at a given location determined in part by interventions taken at many power plants. A given unit's dependence on regulatory interventions at multiple power plants gives rise to what is known in the causal inference literature as interference. The fact that interventions are applied at one level of observation (e.g., power plants) and outcomes of interest are measured at another level (e.g., individuals or populations) presents a bipartite structure to the data. The combination of these features presents the challenge of bipartite causal inference with interference.
Aim 1 develops new Bayesian methods for bipartite partial interference in settings where observations can be clustered (e.g., by geography or pollution transport patterns) so that interference is present within cluster but not between clusters.
Aim 2 develops new Bayesian methods with general interference structures.
Aim 3 deploys our newly-developed methods to an unprecedented database on power plants, emissions, ambient air quality, and health outcomes across the entire US to compare the effectiveness of regulatory policies for reducing power plant emissions.
Aim 4 will support all other aims with the development of tools for reproducible research. The methods, data, and software we develop and disseminate will allow systematic and rigorous evaluation of the comparative effectiveness of complex public health interventions that exhibit interference among multiple levels of observational unit. The motivating example is air quality regulatory policy, but the methods will prove applicable to the evaluation of a variety of other types of complex public health interventions. The newly-developed methods will advance the ?eld of causal inference through relaxation of key assumptions that are routinely violated in prac- tice. Application of our methods to the evaluation of power plant regulations will provide the ?rst statistically-based evidence of the health impacts of such policies and constitute a paradigm shift in the way controversial air quality interventions are evaluated to support policy decisions.

Public Health Relevance

Public health interventions routinely target upstream determinants of health (e.g., social or environmental factors) to advance the health of populations. Evaluating the effectiveness of such com- plex public health interventions cannot be accomplished with existing statistical tools, which have primarily been developed in clinical settings where treatments are applied directly to patients. We develop new statistical meth- ods for comparing the effectiveness of complex public health interventions and apply these methods to the eval- uation of contentious regulatory policies designed to reduce pollution-related health burden by limiting harmful emissions from US power plants.

Agency
National Institute of Health (NIH)
Institute
National Institute of Environmental Health Sciences (NIEHS)
Type
Research Project (R01)
Project #
5R01ES026217-05
Application #
9638545
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Joubert, Bonnie
Project Start
2016-02-01
Project End
2022-01-31
Budget Start
2020-02-01
Budget End
2021-01-31
Support Year
5
Fiscal Year
2020
Total Cost
Indirect Cost
Name
University of Texas Austin
Department
Type
Schools of Medicine
DUNS #
170230239
City
Austin
State
TX
Country
United States
Zip Code
78759
Zigler, Corwin M; Choirat, Christine; Dominici, Francesca (2018) Impact of National Ambient Air Quality Standards Nonattainment Designations on Particulate Pollution and Health. Epidemiology 29:165-174
Antonelli, Joseph; Cefalu, Matthew; Palmer, Nathan et al. (2018) Doubly robust matching estimators for high dimensional confounding adjustment. Biometrics :
Wilson, Ander; Zigler, Corwin M; Patel, Chirag J et al. (2018) Model-averaged confounder adjustment for estimating multivariate exposure effects with linear regression. Biometrics 74:1034-1044
Antonelli, Joseph; Han, Bing; Cefalu, Matthew (2017) A synthetic estimator for the efficacy of clinical trials with all-or-nothing compliance. Stat Med 36:4604-4615
Dominici, Francesca; Zigler, Corwin (2017) Best Practices for Gauging Evidence of Causality in Air Pollution Epidemiology. Am J Epidemiol 186:1303-1309
Di, Qian; Wang, Yan; Zanobetti, Antonella et al. (2017) Air Pollution and Mortality in the Medicare Population. N Engl J Med 376:2513-2522
Makar, Maggie; Antonelli, Joseph; Di, Qian et al. (2017) Estimating the Causal Effect of Low Levels of Fine Particulate Matter on Hospitalization. Epidemiology 28:627-634
Di, Qian; Dai, Lingzhen; Wang, Yun et al. (2017) Association of Short-term Exposure to Air Pollution With Mortality in Older Adults. JAMA 318:2446-2456
Braun, Danielle; Gorfine, Malka; Parmigiani, Giovanni et al. (2017) Propensity scores with misclassified treatment assignment: a likelihood-based adjustment. Biostatistics 18:695-710
Antonelli, Joseph; Zigler, Corwin; Dominici, Francesca (2017) Guided Bayesian imputation to adjust for confounding when combining heterogeneous data sources in comparative effectiveness research. Biostatistics 18:553-568

Showing the most recent 10 out of 17 publications