The health and integrity of photoreceptors critically depend on the composition and volume of their extracellular microenvironment. Regulation of the ionic composition and volume of this so-called subretinal space is accomplished by the transport of ions, water, and metabolites across the retinal pigment epithelium (RPE), a monolayer of cells juxtaposed between the photoreceptor outer segments and the choroidal blood supply. RPE transport is the result of the coordinated activity of a diverse group of ion pumps, co-transporters , exchangers, and channels residing in the apical and basolateral membranes. With changes in retinal activity, chemical signals released by retinal cell diffuse too the RPE where transport is adjusted to compensate for alteration in the photoreceptor microenvironment. Disruption of these transport processes or their regulation may cause adverse changes in the subretinal space, contributing to retinal disease. These transport pathways are also responsible for maintaining the intracellular composition in the RPE cell, which, if disturbed, could adversely affect other key RPE functions such as vitamin A transport and metabolism. Our overall goal is to understand the mechanisms by which potassium (K+) channels participate in the regulation of the volume and ionic composition of the fluid in both the subretinal space and the RPE cytoplasm.
The specific aims are: (1) To determine the molecular basis for the inwardly rectifying K+ (Kir) conductance of the RPE; (2) To determine the mechanism underlying the regulation of the Kir channel by intracellular ATP; (3) To understand how the Kir channel is modulated by physiological changes in intracellular pH; and (4) To test the hypothesis that volume-induced activation of another K+ channel, an M-type K+ channel, is mediated by arachidonic acid metabolites.
These aims will be pursued using a combination of molecular and electrophysiological techniques to investigate K+ channel structure, function, and regulation. The outcome of these studies will be a better understanding of how these critically important transport proteins operate in the RPE to maintain a healthy photoreceptor microenvironment.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
3R01EY008850-13S1
Application #
6802927
Study Section
Visual Sciences C Study Section (VISC)
Program Officer
Mariani, Andrew P
Project Start
1991-01-01
Project End
2004-12-31
Budget Start
2003-01-01
Budget End
2003-12-31
Support Year
13
Fiscal Year
2003
Total Cost
$107,178
Indirect Cost
Name
University of Michigan Ann Arbor
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
073133571
City
Ann Arbor
State
MI
Country
United States
Zip Code
48109
Zhang, Xiaoming; Hughes, Bret A (2013) KCNQ and KCNE potassium channel subunit expression in bovine retinal pigment epithelium. Exp Eye Res 116:424-32
Zhang, Wei; Zhang, Xiaoming; Wang, Hui et al. (2013) Characterization of the R162W Kir7.1 mutation associated with snowflake vitreoretinopathy. Am J Physiol Cell Physiol 304:C440-9
Pattnaik, Bikash R; Hughes, Bret A (2012) Effects of KCNQ channel modulators on the M-type potassium current in primate retinal pigment epithelium. Am J Physiol Cell Physiol 302:C821-33
Zhang, Xiaoming; Yang, Dongli; Hughes, Bret A (2011) KCNQ5/K(v)7.5 potassium channel expression and subcellular localization in primate retinal pigment epithelium and neural retina. Am J Physiol Cell Physiol 301:C1017-26
Yang, Dongli; Elner, Susan G; Clark, Andrea J et al. (2011) Activation of P2X receptors induces apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci 52:1522-30
Pattnaik, Bikash R; Hughes, Bret A (2009) Regulation of Kir channels in bovine retinal pigment epithelial cells by phosphatidylinositol 4,5-bisphosphate. Am J Physiol Cell Physiol 297:C1001-11
Yang, Dongli; Zhang, Xiaoming; Hughes, Bret A (2008) Expression of inwardly rectifying potassium channel subunits in native human retinal pigment epithelium. Exp Eye Res 87:176-83
Yang, Dongli; Swaminathan, Anuradha; Zhang, Xiaoming et al. (2008) Expression of Kir7.1 and a novel Kir7.1 splice variant in native human retinal pigment epithelium. Exp Eye Res 86:81-91
Hughes, Bret A; Swaminathan, Anuradha (2008) Modulation of the Kir7.1 potassium channel by extracellular and intracellular pH. Am J Physiol Cell Physiol 294:C423-31
Kindzelskii, Andrei L; Elner, Victor M; Elner, Susan G et al. (2004) Human, but not bovine, photoreceptor outer segments prime human retinal pigment epithelial cells for metabolic activation and massive oxidant release in response to lipopolysaccharide and interferon-gamma. Exp Eye Res 79:431-5

Showing the most recent 10 out of 26 publications