The growth of the mammalian lens must be regulated with precision if images are to be focused sharply on the retina. Lens growth is ultimately dependent on cell proliferation in the epithelial layer but, despite many years of study, the details of this process are poorly understood. It has proved difficult to measure cell dynamics on the spherical anterior surface of the lens. New approaches, utilizing induced expression of fluorescent proteins and in situ imaging of S-phase cells, have provided fresh insights into the kinetics of lens cell proliferation. Preliminary data suggest that most epithelial cells are located in regions of the epithelium that support cell proliferation. Long-term imaging studies have revealed that cells migrate within the epithelium and, unexpectedly, that epithelial cells undergo multiple divisions before terminally differentiating into fiber cells. As a consequence, large, cuneiform (wedge- shaped) clones of fiber cells in the adult lens are derived from individual epithelial cells. Intriguingly, cortical cataracts in humans are characterized by the presence of cuneiform opacities of unknown etiology. Epidemiological studies have identified a link between cortical cataracts and sun exposure and some investigators have suggested that UV-induced somatic mutations could contribute to cataract formation. New insights into proliferative dynamics in the lens epithelium provide an explanation for how mutations incurred in sun-exposed regions of the epithelium could manifest as cuneiform opacities in the lens fiber mass. Kinetic parameters will be collected and used to formulate a stochastic, branching process model of lens growth. A cellular model will also be developed, in which induced expression of GFP will be used as a lineage tracer to follow the fate of mutant cells. Finally, mutations in TP53, a gene commonly mutated in sun-exposed epidermis, will be used to monitor mutational load in lens epithelium and fiber cells. These experiments are expected to provide important insights into the control of lens growth and the etiology of cortical cataract in humans.

Public Health Relevance

Cortical cataract is a global health burden. This project examines the link between proliferation of cells in the lens epithelium and cataract formation. Results of this research may lead to the development of strategies to prevent or delay cataract formation.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
4R01EY009852-24
Application #
9063127
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Araj, Houmam H
Project Start
1992-09-30
Project End
2017-03-31
Budget Start
2016-04-01
Budget End
2017-03-31
Support Year
24
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Washington University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
068552207
City
Saint Louis
State
MO
Country
United States
Zip Code
63130
De Maria, Alicia; Zhao, Haiqing; Bassnett, Steven (2018) Expression of potassium-dependent sodium-calcium exchanger in the murine lens. Exp Eye Res 167:18-24
Bassnett, Steven; Costello, M Joseph (2017) The cause and consequence of fiber cell compaction in the vertebrate lens. Exp Eye Res 156:50-57
Šiki?, Hrvoje; Shi, Yanrong; Lubura, Snježana et al. (2017) A full lifespan model of vertebrate lens growth. R Soc Open Sci 4:160695
Bassnett, Steven; Šiki?, Hrvoje (2017) The lens growth process. Prog Retin Eye Res 60:181-200
Mesa, Rosana; Tyagi, Manoj; Harocopos, George et al. (2016) Somatic Variants in the Human Lens Epithelium: A Preliminary Assessment. Invest Ophthalmol Vis Sci 57:4063-75
De Maria, Alicia; Bassnett, Steven (2015) Birc7: A Late Fiber Gene of the Crystalline Lens. Invest Ophthalmol Vis Sci 56:4823-34
Šiki?, Hrvoje; Shi, Yanrong; Lubura, Snježana et al. (2015) A stochastic model of eye lens growth. J Theor Biol 376:15-31
Shi, Yanrong; De Maria, Alicia; Lubura, Snježana et al. (2015) The penny pusher: a cellular model of lens growth. Invest Ophthalmol Vis Sci 56:799-809
Shi, Yanrong; Tu, Yidong; Mecham, Robert P et al. (2013) Ocular phenotype of Fbn2-null mice. Invest Ophthalmol Vis Sci 54:7163-73
Mesa, Rosana; Bassnett, Steven (2013) UV-B-induced DNA damage and repair in the mouse lens. Invest Ophthalmol Vis Sci 54:6789-97

Showing the most recent 10 out of 45 publications