Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY010206-04
Application #
2163919
Study Section
Visual Sciences B Study Section (VISB)
Project Start
1993-07-01
Project End
1998-06-30
Budget Start
1996-07-01
Budget End
1997-06-30
Support Year
4
Fiscal Year
1996
Total Cost
Indirect Cost
Name
University of California San Diego
Department
Miscellaneous
Type
Schools of Arts and Sciences
DUNS #
077758407
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Stockman, Andrew; Langendorfer, Micha; Sharpe, Lindsay T (2007) Human short-wavelength-sensitive cone light adaptation. J Vis 7:4
Stockman, Andrew; Montag, Ethan D; Plummer, Daniel J (2006) Paradoxical shifts in human color sensitivity caused by constructive and destructive interference between signals from the same cone class. Vis Neurosci 23:471-8
Stockman, Andrew; Plummer, Daniel J (2005) Spectrally opponent inputs to the human luminance pathway: slow +L and -M cone inputs revealed by low to moderate long-wavelength adaptation. J Physiol 566:77-91
Stockman, Andrew; Plummer, Daniel J (2005) Long-wavelength adaptation reveals slow, spectrally opponent inputs to the human luminance pathway. J Vis 5:702-16
Stockman, Andrew; Plummer, Daniel J; Montag, Ethan D (2005) Spectrally opponent inputs to the human luminance pathway: slow +M and -L cone inputs revealed by intense long-wavelength adaptation. J Physiol 566:61-76
Stockman, A; Sharpe, L T (2000) The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype. Vision Res 40:1711-37
Stockman, A; Sharpe, L T (2000) Tritanopic color matches and the middle- and long-wavelength-sensitive cone spectral sensitivities. Vision Res 40:1739-50
Sharpe, L T; Stockman, A; Jagle, H et al. (1999) L, M and L-M hybrid cone photopigments in man: deriving lambda max from flicker photometric spectral sensitivities. Vision Res 39:3513-25
Stockman, A; Sharpe, L T; Fach, C (1999) The spectral sensitivity of the human short-wavelength sensitive cones derived from thresholds and color matches. Vision Res 39:2901-27
Stockman, A; Plummer, D J (1998) Color from invisible flicker: a failure of the Talbot-Plateau law caused by an early 'hard' saturating nonlinearity used to partition the human short-wave cone pathway. Vision Res 38:3703-28

Showing the most recent 10 out of 13 publications