The overall goal of our research is to determine the role of deamidation in the lens. During the last funding cycle, we convincingly demonstrated that deamidation led to soluble aggregates, destabilized ?-crystallins, altered interactions between ? -subunits, and increased the ?-crystallin needed to chaperone ?-crystallins. These results suggest a mechanism for deamidation-induced insolubilization of crystallins and strongly support that deamidation contributes directly to cataract formation. Based on our findings, we hypothesize that deamidation decreases crystallin stability leading to aggregation that eventually triggers cataract formation. Experiments in Aim 1 will identify potentially relevant deamidations in the lens. Next, we will determine if deamidations previously identified to cause aggregation or decrease stability directly lead to cataract formation by using an in vivo model. Experiments in Aim 2 will determine the mechanism by which deamidation triggers aggregation, by identifying altered interactions within ? -crystallins and with the ?-chaperone. Numerous deamidation sites exist in the ? -crystallins. The proposed experiments are innovative in that they will distinguish between functionally relevant sites and those that are detrimental, using state-of-the art approaches to directly test the role of deamidation in vivo. Future studies will screen for agents that prevent crystallin aggregation.

Public Health Relevance

Cataracts are the leading cause of blindness worldwide and one of the largest expenses to the U.S. government's health care system. Our research suggests that the major age-related modification in the lens, deamidation, alters structure and function of the lens crystallins and may induce aggregation associated with cataracts in vivo. Being able to prevent deamidation-induced aggregation of lens crystallins may prevent cataracts and help to prevent other aggregation diseases.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Araj, Houmam H
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Schools of Dentistry
United States
Zip Code
Lampi, Kirsten J; Murray, Matthew R; Peterson, Matthew P et al. (2016) Differences in solution dynamics between lens ?-crystallin homodimers and heterodimers probed by hydrogen-deuterium exchange and deamidation. Biochim Biophys Acta 1860:304-14
Lampi, Kirsten J; Wilmarth, Phillip A; Murray, Matthew R et al. (2014) Lens ?-crystallins: the role of deamidation and related modifications in aging and cataract. Prog Biophys Mol Biol 115:21-31
Lampi, Kirsten J; Fox, Cade B; David, Larry L (2012) Changes in solvent accessibility of wild-type and deamidated ýýB2-crystallin following complex formation with ýýA-crystallin. Exp Eye Res 104:48-58
Fort, Patrice E; Lampi, Kirsten J (2011) New focus on alpha-crystallins in retinal neurodegenerative diseases. Exp Eye Res 92:98-103
Mellies, Jay L; Benison, Gregory; McNitt, William et al. (2011) Ler of pathogenic Escherichia coli forms toroidal protein-DNA complexes. Microbiology 157:1123-33
Takata, Takumi; Smith, Joshua P; Arbogast, Brian et al. (2010) Solvent accessibility of betaB2-crystallin and local structural changes due to deamidation at the dimer interface. Exp Eye Res 91:336-46
Michiel, Magalie; Duprat, Elodie; Skouri-Panet, Feriel et al. (2010) Aggregation of deamidated human betaB2-crystallin and incomplete rescue by alpha-crystallin chaperone. Exp Eye Res 90:688-98
Dudek, Edward J; Lampi, Kirsten J; Lampi, Jason A et al. (2010) Ubiquitin proteasome pathway-mediated degradation of proteins: effects due to site-specific substrate deamidation. Invest Ophthalmol Vis Sci 51:4164-73
Takata, Takumi; Woodbury, Luke G; Lampi, Kirsten J (2009) Deamidation alters interactions of beta-crystallins in hetero-oligomers. Mol Vis 15:241-9
Takata, Takumi; Oxford, Julie T; Demeler, Borries et al. (2008) Deamidation destabilizes and triggers aggregation of a lens protein, betaA3-crystallin. Protein Sci 17:1565-75

Showing the most recent 10 out of 17 publications