Activity-dependent plasticity is essential for development and function of the nervous system. In the mammalian neocortex, sensory stimuli play crucial roles in shaping the circuitry and function, which may be largely mediated by activity-dependent synaptic modification. Although at each level - synaptic, circuitry, and functional - cortical plasticity has been studied extensively, the causal relationship between activity-induced modifications at different levels remains to be firmly established. Our goal is to bridge the understanding of cortical plasticity at these levels. In recent studies, we have demonstrated that asynchronous visual stimuli (1-2 min) can induce shifts in adult cortical receptive fields (RFs) and in human spatial perception in a manner consistent with spike-timing-dependent plasticity (STDP), a powerful synaptic learning rule widely observed among excitatory synapses in the brain. In the proposed study we will further examine the functional modifications of adult visual cortex mediated by STDP, using a combination of electrophysiological and psychophysical experiments and computational modeling. There are three specific aims, examining the mechanism and functional significance of the cortical plasticity.
In Aim 1, we will test whether RF and perceptual modifications can be induced by brief periods (seconds) of visual conditioning, a possibility suggested by recent studies in cortical slices. Such rapid plasticity may operate more frequently under natural conditions, and this experiment will provide a basis for our subsequent studies of cortical modifications induced by natural stimuli.
In Aim 2, we will investigate the neuronal circuitry underlying the functional modification. We will first measure the interocular transfer of the effect to determine whether it is cortical in origin. We will then examine systematically the dependence of the cortical modification on conditioning parameters (orientation, luminance polarity, timing, and location of conditioning stimuli) and on other properties of the recorded neuron (simple/complex classification, laminar location, binocularity, and direction selectivity) to further determine the underlying circuitry.
In Aim 3, we will directly assess the functional relevance of the plasticity by measuring cortical modification induced by motion stimuli and by natural scenes containing motion signals. Together, these studies are likely to provide significant new insights into the functional implications of activity-dependent synaptic plasticity at the levels of cortical circuitry, RF properties, and visual perception.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY015180-02
Application #
6943840
Study Section
Cognitive Neuroscience Study Section (COG)
Program Officer
Oberdorfer, Michael
Project Start
2004-09-01
Project End
2008-08-31
Budget Start
2005-09-01
Budget End
2006-08-31
Support Year
2
Fiscal Year
2005
Total Cost
$296,238
Indirect Cost
Name
University of California Berkeley
Department
Biochemistry
Type
Schools of Arts and Sciences
DUNS #
124726725
City
Berkeley
State
CA
Country
United States
Zip Code
94704
Yao, Haishan; Shi, Lei; Han, Feng et al. (2007) Rapid learning in cortical coding of visual scenes. Nat Neurosci 10:772-8
Meliza, C Daniel; Dan, Yang (2006) Receptive-field modification in rat visual cortex induced by paired visual stimulation and single-cell spiking. Neuron 49:183-9
Karmarkar, Uma R; Dan, Yang (2006) Experience-dependent plasticity in adult visual cortex. Neuron 52:577-85