Retinal degeneration diseases pose great health risks. Currently, the effective cures and prevention methods remain elusive. Identification of genes and genetic processes important for the formation and survival of retinal neurons will lead to the development of prevention drugs targeting these genes and processes and to develop approaches to replace the degenerated retinal neurons by transplantation or regeneration from neuronal stem cells. The long-term objective of this proposal is to understand the role of Brn-3 POU-domain transcription factors in retinal neurogenesis and to identify and characterize the roles of their downstream effect genes. The three brn-3 genes, brn-3a, brn-3b and brn-3c, share a highly conserved functional POU-domain and their expression during neurogenesis and in adult is largely overlapping. Targeted mutagenesis studies in mice have shown that deletion of each brn-3 genes lead to unique neuronal phenotypes with the loss of a selected group of neurons. Intriguingly, the uniqueness of knockout phenotypes in each brn-3 mutant closely correlated to its distinctive spatiotemporal expression pattern. In retina, expression of brn-3 genes is mostly overlapping in retinal ganglion cells (RGCs) and the onset of brn-3b expression precedes those of brn-3a and brn-3c. Deletion of brn-3b results in the terminal differentiation failure and apoptosis of approximate 70% of RGCs. Loss of brn-3c has similar effects on a small percentage of RGCs. To further understand the roles of brn-3 genes in retinal neurogenesis and to explore the common molecular mechanisms of brn-3 function, in this application, we will: 1) use the transgenic approach to test the functional equivalence of brn 3 genes. The coding regions of brn-3a and brn-3c will be used to replace brn-3b in the knock-in experiments. The ability of knock-in brn-3 genes to rescue the retinal phenotypes associated with brn-3b knockout will be examined; 2) determine the role of brn-3a in the development of RGCs. Defects in retina of brn-3a-null mice or mice null for brn-3b and brn-3a will be analyzed; 3) identify and characterize in vivo the role of brn-3b downstream genes. We have shown that loss of Brn-3b leads to the diminished RGC expression of transcription factors Gfi-1 and LMO2. Gfi-1 is a zinc-finger protein required for the survival of inner ear hair cells. Recently, we have identified LMO2 as the first transcription factor expressed in the GCL of developing retina in a low-nasal-to-high-temporal gradient. Transgenic approaches will be used to investigate their roles in retinal development, particularly the axon pathfinding and survival of RGCs.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY015551-04
Application #
7225926
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Mariani, Andrew P
Project Start
2004-05-01
Project End
2009-04-30
Budget Start
2007-05-01
Budget End
2009-04-30
Support Year
4
Fiscal Year
2007
Total Cost
$378,702
Indirect Cost
Name
University of Rochester
Department
Neurosciences
Type
Schools of Dentistry
DUNS #
041294109
City
Rochester
State
NY
Country
United States
Zip Code
14627
Joshi, Pushkar S; Molyneaux, Bradley J; Feng, Liang et al. (2008) Bhlhb5 regulates the postmitotic acquisition of area identities in layers II-V of the developing neocortex. Neuron 60:258-72
Pan, Ling; Deng, Min; Xie, Xiaoling et al. (2008) ISL1 and BRN3B co-regulate the differentiation of murine retinal ganglion cells. Development 135:1981-90
Shibasaki, Koji; Takebayashi, Hirohide; Ikenaka, Kazuhiro et al. (2007) Expression of the basic helix-loop-factor Olig2 in the developing retina: Olig2 as a new marker for retinal progenitors and late-born cells. Gene Expr Patterns 7:57-65
Feng, Liang; Xie, Xiaoling; Joshi, Pushkar S et al. (2006) Requirement for Bhlhb5 in the specification of amacrine and cone bipolar subtypes in mouse retina. Development 133:4815-25
Deng, Min; Pan, Ling; Xie, Xiaoling et al. (2006) Differential expression of LIM domain-only (LMO) genes in the developing mouse inner ear. Gene Expr Patterns 6:857-63
Pan, Ling; Yang, Zhiyong; Feng, Liang et al. (2005) Functional equivalence of Brn3 POU-domain transcription factors in mouse retinal neurogenesis. Development 132:703-12