Autosomal Dominant Optic Atrophy (DOA) is the most common hereditary form of optic neuropathy, leading to central vision loss in young children. In DOA retinal ganglion cells die and the optic nerve degenerates by an unknown mechanism. Unfortunately, there is no treatment or cure for DOA. Recent advances identified the gene that is mutated in DOA. The gene maps to chromosome 3q28 and is called Optic Atrophy Type 1 (OPA1). Intriguingly, OPA1 encodes a mitochondrial protein. The precise function of OPA1 remains unclear. However, in its yeast homologue, OPA1 may promote mitochondrial fusion and maintain the mitochondrial network and the mitochondrial DNA (mtDNA). OPA1 is a dynamin-related GTPase and may act either as a mechano-enzyme or a regulatory GTPase. The goal of this project is to identify the mechanism underlying retinal ganglion cell and optic nerve degeneration in DOA. ? ? The specific questions that will be addressed here are: (1) Do OPA1 mutations lead to breakdown of the mitochondrial network, mtDNA depletion, and abnormal mitochondrial ultrastructure? (2) Does OPA1 inactivation result in respiratory deficits, decrease in ATP, decrease in mitochondrial membrane potential, increase in free radicals, and sensitization to UV- or NMDA/NO-induced cell death? (3) What are the biophysical and structural characteristics of OPA1? ? ? In this study retinal ganglion cells will be studied using """"""""interdisciplinary"""""""" approaches including 3D imaging, electron tomography, cell biology, molecular genetics, and bioenergetics. In addition, bioinformatics and structure biology will be used to unravel the function of OPA1. ? ? This study will embark on the first detailed cellular, molecular, biochemical and structural analysis of OPA1 and its mutations. Results obtained here may reveal a mechanistic explanation for the retinal ganglion cell death in DOA. Importantly, insights gained here may set the foundation for new therapies to fight vision loss in DOA. ? ?

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
7R01EY016164-03
Application #
7176765
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Liberman, Ellen S
Project Start
2005-02-01
Project End
2010-01-31
Budget Start
2007-02-01
Budget End
2008-01-31
Support Year
3
Fiscal Year
2007
Total Cost
$310,244
Indirect Cost
Name
University of Central Florida
Department
Type
Schools of Medicine
DUNS #
150805653
City
Orlando
State
FL
Country
United States
Zip Code
32826
Dowding, J M; Song, W; Bossy, K et al. (2014) Cerium oxide nanoparticles protect against A?-induced mitochondrial fragmentation and neuronal cell death. Cell Death Differ 21:1622-32
Kushnareva, Y E; Gerencser, A A; Bossy, B et al. (2013) Loss of OPA1 disturbs cellular calcium homeostasis and sensitizes for excitotoxicity. Cell Death Differ 20:353-65
Kincaid, Brad; Bossy-Wetzel, Ella (2013) Forever young: SIRT3 a shield against mitochondrial meltdown, aging, and neurodegeneration. Front Aging Neurosci 5:48
Song, Wenjun; Song, Yuting; Kincaid, Brad et al. (2013) Mutant SOD1G93A triggers mitochondrial fragmentation in spinal cord motor neurons: neuroprotection by SIRT3 and PGC-1?. Neurobiol Dis 51:72-81
Song, Wenjun; Chen, Jin; Petrilli, Alejandra et al. (2011) Mutant huntingtin binds the mitochondrial fission GTPase dynamin-related protein-1 and increases its enzymatic activity. Nat Med 17:377-82
Knott, A B; Bossy-Wetzel, E (2010) Impact of nitric oxide on metabolism in health and age-related disease. Diabetes Obes Metab 12 Suppl 2:126-33
Bossy, Blaise; Petrilli, Alejandra; Klinglmayr, Eva et al. (2010) S-Nitrosylation of DRP1 does not affect enzymatic activity and is not specific to Alzheimer's disease. J Alzheimers Dis 20 Suppl 2:S513-26
Montessuit, Sylvie; Somasekharan, Syam Prakash; Terrones, Oihana et al. (2010) Membrane remodeling induced by the dynamin-related protein Drp1 stimulates Bax oligomerization. Cell 142:889-901
Perkins, Guy; Bossy-Wetzel, Ella; Ellisman, Mark H (2009) New insights into mitochondrial structure during cell death. Exp Neurol 218:183-92
Knott, Andrew B; Bossy-Wetzel, Ella (2009) Nitric oxide in health and disease of the nervous system. Antioxid Redox Signal 11:541-54

Showing the most recent 10 out of 21 publications