Age-related macular degeneration and other macular diseases commonly lead to irreversible loss of the central visual field. In these cases of central field loss (CFL), patients must rely on peripheral vision to recognize objects, identify faces, and read. However, performance on these form vision tasks is far worse than the reduced spatial resolution in peripheral vision predicts. The causes of this excess impairment are not well understood. Further, we do not know to what extent changes can be induced in the peripheral visual system to alleviate these impairments over the long term, nor do we understand the nature of such plasticity. A basic understanding of peripheral form vision is necessary if we are to develop effective rehabilitation regimens and adaptive technologies for patients with central vision loss. An equally important advance would be to understand why form vision is qualitatively inferior in peripheral compared to central vision. The proposed study aims to make foundational advances in our understanding of peripheral form vision, and does so in a way that is relevant for the condition of CFL. We propose to study peripheral form vision from the perspective of active vision, where oculomotor control plays a central role. Specifically, we will focus on the interaction between plasticity in visual crowding, a key form vision deficit in the periphery, and changes in oculomotor strategy induced by CFL. We will begin by testing a novel theory that links crowding in normal peripheral vision to image statistics that have been acquired under the influence of saccadic eye movements. We will build an image-encoding model of early visual processing stages based on the theoretical framework we recently developed. This model of peripheral form vision will be validated quantitatively against a diverse set of findings on crowding in the literature. Separately, we will test a new theory of oculomotor development that describes the formation of the preferred retinal locus (PRL), which is a common adjustment in CFL. The image-encoding model will enable us to predict the nature of form vision plasticity given a PRL. This research project thus stands to provide the first comprehensive theory of peripheral form vision in the context of central field loss. In addition, it will produce a rich an unique data set on peripheral form vision and oculomotor adaptation that will inform other investigations of peripheral form vision.

Public Health Relevance

Macular disorders, and in particular age-related macular degeneration, are a leading cause of low vision and blindness. Losing the macula (fovea) will force a person to use his/her peripheral vision to perform important form-vision tasks such as reading, face identification, and object recognition. However, peripheral vision is ill suited for these tasks, for reasons that are not well understood. Moreover, we lack data and models that describe and predict how peripheral vision adapts to the loss of the central visual field. The proposed research will fill this knowledge gap. The data and predictive models that will result from this study can inform the development of effective rehabilitation regimens and adaptive technologies for patients with central vision loss.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY017707-08
Application #
9320738
Study Section
Mechanisms of Sensory, Perceptual, and Cognitive Processes Study Section (SPC)
Program Officer
Wiggs, Cheri
Project Start
2008-05-01
Project End
2019-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
8
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Southern California
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
072933393
City
Los Angeles
State
CA
Country
United States
Zip Code
90033
Agaoglu, Mehmet N; Sheehy, Christy K; Tiruveedhula, Pavan et al. (2018) Suboptimal eye movements for seeing fine details. J Vis 18:8
Chen, Nihong; Bao, Pinglei; Tjan, Bosco S (2018) Contextual-Dependent Attention Effect on Crowded Orientation Signals in Human Visual Cortex. J Neurosci 38:8433-8440
Olman, Cheryl A; Bao, Pinglei; Engel, Stephen A et al. (2018) Hemifield columns co-opt ocular dominance column structure in human achiasma. Neuroimage 164:59-66
Wallace, Julian M; Chung, Susana T L; Tjan, Bosco S (2017) Object crowding in age-related macular degeneration. J Vis 17:33
Shin, Kilho; Chung, Susana T L; Tjan, Bosco S (2017) Crowding, visual awareness, and their respective neural loci. J Vis 17:18
Margalit, Eshed; Shah, Manan P; Tjan, Bosco S et al. (2016) The Lateral Occipital Complex shows no net response to object familiarity. J Vis 16:3
Agaoglu, Mehmet N; Chung, Susana T L (2016) Can (should) theories of crowding be unified? J Vis 16:10
A?ao?lu, Mehmet N; Ö?men, Haluk; Chung, Susana T L (2016) Unmasking saccadic uncrowding. Vision Res 127:152-164
Bernard, Jean-Baptiste; Chung, Susana T L (2016) The Role of External Features in Face Recognition with Central Vision Loss. Optom Vis Sci 93:510-20
Cunningham, Samantha I; Shi, Yonggang; Weiland, James D et al. (2015) Feasibility of Structural and Functional MRI Acquisition with Unpowered Implants in Argus II Retinal Prosthesis Patients: A Case Study. Transl Vis Sci Technol 4:6

Showing the most recent 10 out of 28 publications