The overall goal of this project is to test the hypothesis that reduced Cx43 expression and subsequent altered cell-cell communication triggered by high glucose/diabetes leads to cell death and breakdown of vascular homeostasis in the retinal capillaries in diabetic retinopathy. The hypothesis is based on findings that high glucose reduces Cx43 expression in microvascular endothelial cells and retinal pericytes and compromises gap junction intercellular communication. Our current study showed reduced Cx43 expression triggers apoptosis (manuscript under revision, IOVS). The overall working hypothesis is that reduced Cx43 expression triggers vascular cell death, a prominent and early lesion associated with the development of diabetic retinopathy, which in turn, reduces cell-cell communication in the retinal vascular cells and ultimately disrupts vascular homeostasis. Retinal vascular cell death is known to occur by apoptosis but it is unknown how apoptosis is triggered during the development of diabetic retinopathy. Preliminary data suggests that communication between vascular cells, that is endothelial cell-endothelial cell, endothelial cell-pericyte, and pericyte-pericyte is essential for their survival, and that disruption in cell-cell communication may trigger apoptosis and interfere with their role to form a functional unit via the connexin (Cx) channels in cell junctions. The specific focus of this proposal is to determine (i) the effect of reduced Cx43 expression in retinal endothelial cells and pericytes, (ii) whether high glucose- induced excess ECM synthesis modulates Cx43 expression in retinal endothelial cells and pericytes, and (iii) whether reduced Cx43 expression induces tight junction dysfunction in the retinal endothelial cells. A variety of cell biological, molecular biological and biochemical techniques including antisense oligo mediated specific downregulation of gene expression, scrape load dye transfer technique, fluorescence microscopy and Western blot method will be used for studying the consequence of high glucose-induced inhibition of Cx43 expression and reduced cell-cell communication on retinal cell viability and function. Findings from these studies will provide a better understanding of cell-cell communication underlying altered Cx43 expression and gap junction channels in retinal vascular cells and their role in breakdown of vascular homeostasis associated with diabetic retinopathy. An important mission of the agency is to find a cure and prevent complications arising from diabetic retinopathy. The proposed project is expected to provide important findings that can help in better understanding the pathogenesis of diabetic retinopathy.

Public Health Relevance

Currently, there is no cure for diabetic retinopathy, the leading cause of blindness in the working age Americans. It is expected that the findings from this project would provide valuable insight towards testing a novel mechanism underlying retinal vascular cell loss and capillary leakage, the two critical steps in the development of diabetic retinopathy.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY018218-04
Application #
8207292
Study Section
Biology and Diseases of the Posterior Eye Study Section (BDPE)
Program Officer
Shen, Grace L
Project Start
2009-01-01
Project End
2013-12-31
Budget Start
2012-01-01
Budget End
2012-12-31
Support Year
4
Fiscal Year
2012
Total Cost
$361,390
Indirect Cost
$147,550
Name
Boston Medical Center
Department
Type
DUNS #
005492160
City
Boston
State
MA
Country
United States
Zip Code
02118
Roy, Sayon; Kim, Dongjoon; Lim, Remington (2017) Cell-cell communication in diabetic retinopathy. Vision Res 139:115-122
Roy, Sayon; Kern, Timothy S; Song, Brian et al. (2017) Mechanistic Insights into Pathological Changes in the Diabetic Retina: Implications for Targeting Diabetic Retinopathy. Am J Pathol 187:9-19
Roy, Sayon; Jiang, Jean X; Li, An-Fei et al. (2017) Connexin channel and its role in diabetic retinopathy. Prog Retin Eye Res 61:35-59
Tien, Thomas; Muto, Tetsuya; Zhang, Joyce et al. (2016) Association of reduced Connexin 43 expression with retinal vascular lesions in human diabetic retinopathy. Exp Eye Res 146:103-6
Roy, Sayon; Amin, Shruti; Roy, Sumon (2016) Retinal fibrosis in diabetic retinopathy. Exp Eye Res 142:71-5
Roy, Sumon; Kim, Dongjoon; Hernández, Cristina et al. (2015) Beneficial effects of fenofibric acid on overexpression of extracellular matrix components, COX-2, and impairment of endothelial permeability associated with diabetic retinopathy. Exp Eye Res 140:124-129
Muto, Tetsuya; Tien, Thomas; Kim, Dongjoon et al. (2014) High glucose alters Cx43 expression and gap junction intercellular communication in retinal Müller cells: promotes Müller cell and pericyte apoptosis. Invest Ophthalmol Vis Sci 55:4327-37
Tien, Thomas; Muto, Tetsuya; Barrette, Kevin et al. (2014) Downregulation of Connexin 43 promotes vascular cell loss and excess permeability associated with the development of vascular lesions in the diabetic retina. Mol Vis 20:732-41
Oshitari, Toshiyuki; Yamamoto, Shuichi; Roy, Sayon (2014) Increased expression of c-Fos, c-Jun and c-Jun N-terminal kinase associated with neuronal cell death in retinas of diabetic patients. Curr Eye Res 39:527-31
Roy, Sayon; Trudeau, Kyle; Roy, Sumon et al. (2013) Mitochondrial dysfunction and endoplasmic reticulum stress in diabetic retinopathy: mechanistic insights into high glucose-induced retinal cell death. Curr Clin Pharmacol 8:278-84

Showing the most recent 10 out of 17 publications