Retinal degenerative diseases lead to blindness due to loss of the image capturing photoreceptor layer, while neurons in the image processing inner retinal layers are preserved to a large extent. Electronic retinal prostheses seek to restor sight by electrical pattern stimulation of surviving neurons. Very encouraging clinical results with the first retinal prostheses have been recently demonstrated. However, current implants are powered through inductive coils, requiring complex surgical methods to implant the coil-decoder-cable-array systems, which deliver energy to stimulating electrodes via intraocular cables. We developed a photovoltaic subretinal prosthesis, in which silicon photodiodes in each pixel directly convert pulsed near-infrared (NIR) images projected from video goggles into local electric currents to stimulate neurons. This system offers multiple advantages over other designs: due to wireless activation of the pixels in the implant the system is scalable to thousands of electrodes; it maintains the natural link between eye movements and image perception; the implantation is greatly simplified and modular design of the implant allows expanding the visual field by tiling; pillar electrodes allow cellular-scale proximity to the targe neurons. Such a versatile system could be used to address the divergent needs of patients with various forms of retinal degeneration. We have manufactured and tested the first generation of the implants. Photovoltaic arrays show long-term biocompatibility, and provide safe retinal stimulation upon illumination with NIR pulses in-vitro and in-vivo. We now seek to produce the implants designed for highest resolution and lowest stimulation thresholds, and protected by inert and biocompatible coatings for long-term implantations. To achieve these goals we will assess visual acuity and contrast sensitivity obtained with subretinal photovoltaic implants of different designs in-vitro and in-vivo in animals with normal and degenerate retinas. This project brings together a unique combination of engineers, neuroscientists and ophthalmologists to complete the development and evaluation of a high-resolution retinal prosthetic system designed specifically for achieving the functional levels of vision.

Public Health Relevance

Retinal degenerative diseases lead to blindness due to loss of the 'image capturing' photoreceptor layer, while neurons in the 'image processing' inner retinal layers are preserved to a large extent. We developed a photovoltaic subretinal prosthesis, in which photodiodes in each pixel directly convert pulsed near- infrared images projected from video goggles into local electric currents and stimulate neurons. This system is scalable to thousands of pixels, is easily implantable, and maintains the natural link between eye movements and image perception. This innovative design has the potential to addresses the divergent needs of patients with various forms of retinal degeneration.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
4R01EY018608-08
Application #
9096806
Study Section
Special Emphasis Panel (ZRG1)
Program Officer
Shen, Grace L
Project Start
2009-07-01
Project End
2017-06-30
Budget Start
2016-07-01
Budget End
2017-06-30
Support Year
8
Fiscal Year
2016
Total Cost
Indirect Cost
Name
Stanford University
Department
Ophthalmology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Lorach, H; Kang, S; Dalal, R et al. (2018) Long-term Rescue of Photoreceptors in a Rodent Model of Retinitis Pigmentosa Associated with MERTK Mutation. Sci Rep 8:11312
Flores, Thomas; Lei, Xin; Huang, Tiffany et al. (2018) Optimization of pillar electrodes in subretinal prosthesis for enhanced proximity to target neurons. J Neural Eng 15:036011
Ho, Elton; Lorach, Henri; Goetz, Georges et al. (2018) Temporal structure in spiking patterns of ganglion cells defines perceptual thresholds in rodents with subretinal prosthesis. Sci Rep 8:3145
Ho, Elton; Smith, Richard; Goetz, Georges et al. (2018) Spatiotemporal characteristics of retinal response to network-mediated photovoltaic stimulation. J Neurophysiol 119:389-400
Lorach, H; Wang, J; Lee, D Y et al. (2016) Retinal safety of near infrared radiation in photovoltaic restoration of sight. Biomed Opt Express 7:13-21
Flores, Thomas; Goetz, Georges; Lei, Xin et al. (2016) Optimization of return electrodes in neurostimulating arrays. J Neural Eng 13:036010
Lei, Xin; Kane, Sheryl; Cogan, Stuart et al. (2016) SiC protective coating for photovoltaic retinal prosthesis. J Neural Eng 13:046016
Goetz, G A; Palanker, D V (2016) Electronic approaches to restoration of sight. Rep Prog Phys 79:096701
Lee, Dae Yeong; Lorach, Henri; Huie, Phil et al. (2016) Implantation of Modular Photovoltaic Subretinal Prosthesis. Ophthalmic Surg Lasers Imaging Retina 47:171-4
Boinagrov, David; Lei, Xin; Goetz, Georges et al. (2016) Photovoltaic Pixels for Neural Stimulation: Circuit Models and Performance. IEEE Trans Biomed Circuits Syst 10:85-97

Showing the most recent 10 out of 32 publications