More than 250 million people worldwide have compromised vision and over 10 million have been blinded by some kind of corneal disease or injury, usually involving corneal scarring. Scar presence is a vision threat and currently lacks sufficient treatment. Only a small fraction of these patients will be treated by corneal transplantation. Scar is a condition characterized by the presence of myofibroblasts and the excessive and improper deposition of extracellular matrix components, including type III collagen and fibronectin. Reversing the process, going from opaque to clear, or even preventing scar formation, would be ideal and very beneficial. Recently, a few studies, including our own, have suggested that placement of even an imperfect scaffold into a healing wound may result in healing with a clearer cornea than if the wound was allowed to heal naturally. We have developed a cell-based methodology, with the use of a Vitamin C (VitC) derivative, to generate an extracellular matrix that mimics the corneal stroma. We have also found that growth factors, such as TGF-23, stimulate matrix production without stimulating scar components. We propose to use the stable VitC, together with three different growth factors (TGF-23, PDGF and IGF-II), in order to stimulate human corneal fibroblasts to generate a matrix that mimics the human cornea as closely as possible. We then propose to transplant this optimized matrix into mice that have been """"""""humanized'"""""""" with a human-like immune system. This study will allow the examination of human tissue transplantation in a system that is as close to a human's as animal studies will allow. Three interlocking questions will be tested: 1) How well is the transplanted tissue incorporated into the cornea;2) How does the cornea react immunologically to a cell-based corneal substitute;and 3) Does the placement of a scaffold result in healing with a clearer cornea than that seen when the cornea is allowed to heal naturally? Corneal wounding generally results in one of two outcomes-minimal healing, as seen in LASIK surgery, or scar generation, as seen in gaping and penetrating wounds. Our experiments will test whether placement of a cell-based scaffold results in a serious immune response, and if the scaffold may stimulate scar-free healing.

Public Health Relevance

One of the goals of corneal research is to develop a method to treat or prevent corneal scarring. Studies of human scar formation have been limited by the unavailability of human tissue and culture models. We propose to investigate the incorporation of a self-assembled corneal fibroblast substitute into mice with a """"""""humanized"""""""" immune system.

National Institute of Health (NIH)
National Eye Institute (NEI)
Research Project (R01)
Project #
Application #
Study Section
Anterior Eye Disease Study Section (AED)
Program Officer
Mckie, George Ann
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Schepens Eye Research Institute
United States
Zip Code
McKay, Tina B; Karamichos, Dimitrios (2017) Quercetin and the ocular surface: What we know and where we are going. Exp Biol Med (Maywood) 242:565-572
McKay, Tina B; Hjortdal, Jesper; Sejersen, Henrik et al. (2017) Differential Effects of Hormones on Cellular Metabolism in Keratoconus In Vitro. Sci Rep 7:42896
Qi, Hui; Priyadarsini, Shrestha; Nicholas, Sarah E et al. (2017) Analysis of sphingolipids in human corneal fibroblasts from normal and keratoconus patients. J Lipid Res 58:636-648
Sarker-Nag, Akhee; Hutcheon, Audrey E K; Karamichos, Dimitrios (2016) Mitochondrial Profile and Responses to TGF-? Ligands in Keratoconus. Curr Eye Res 41:900-7
Priyadarsini, Shrestha; McKay, Tina B; Sarker-Nag, Akhee et al. (2016) Complete metabolome and lipidome analysis reveals novel biomarkers in the human diabetic corneal stroma. Exp Eye Res 153:90-100
McKay, Tina B; Hjortdal, Jesper; Sejersen, Henrik et al. (2016) Endocrine and Metabolic Pathways Linked to Keratoconus: Implications for the Role of Hormones in the Stromal Microenvironment. Sci Rep 6:25534
McKay, T B; Lyon, D; Sarker-Nag, A et al. (2015) Quercetin attenuates lactate production and extracellular matrix secretion in keratoconus. Sci Rep 5:9003
McKay, Tina B; Sarker-Nag, Akhee; Lyon, Desiree' et al. (2015) Quercetin modulates keratoconus metabolism in vitro. Cell Biochem Funct 33:341-50
Priyadarsini, Shrestha; McKay, Tina B; Sarker-Nag, Akhee et al. (2015) Keratoconus in vitro and the key players of the TGF-? pathway. Mol Vis 21:577-88
Karamichos, D (2015) Ocular tissue engineering: current and future directions. J Funct Biomater 6:77-80

Showing the most recent 10 out of 17 publications