This project seeks to treat age related macular degeneration (AMD) by creating a platform for the sustained intra-ocular delivery of antibody-based therapeutic agents to inhibit vascular endothelial growth factor (VEGF). This interdisciplinary team will design and manufacture prototype nanoporous thin-film devices;establish drug loading techniques and drug release properties;and complete pre-clinical biocompatibility and functional testing in vitro and in animal eye models. Unlike other sustained release technologies, the proposed thin-film devices are functionally tunable to achieve zero-order drug release kinetics, attaining a flat drug release profile and a tight concentration range over several months. By sequestering drug in an underlying reservoir layer within the device, the drug can be protected from the external microenvironment. This ability to load and protect the drug is key for biologically-based therapies which often undergo rapid degradation and clearance from the eye. The device design proposed in this program will mitigate many challenges inherent in ocular drug delivery and provide an innovative approach to the delivery of ocular therapeutics.
Progress in therapeutics for retinal diseases is closely linked to advances in ocular drug delivery. The intra-ocular drug delivery platform proposed here can enhance the administration and efficacy of ophthalmologic drugs for a variety of posterior eye diseases. We propose the use of an injectable nanoporous thin film device to provide drug release with zero-order kinetics over several months, for the delivery of both large molecule and biologic drugs.
Showing the most recent 10 out of 13 publications