The long-term goal of our research is to understand how computational models of performance of visual tasks like locating and shifting gaze to a target a visual array map onto specific neural processes producing that performance. Elucidating this mapping provides converging constraints for discriminating between competing model architectures and provides functional explanations of neural circuit function.
The aims of this proposal test, extend, refine, and integrate two major new computational models of target selection during visual search that we have recently developed. Data will consist of performance of monkeys and human participants searching for a target in a visual array in which target location can change unpredictably supplemented by neurophysiological data from FEF that was collected previously. The models provide quantitative accounts of detailed patterns of correct and error saccade behavior during visual search and also provide explanations for the temporal modulation of neurons in frontal eye field (FEF). Unlike previous models of visual search, ours account for the entire range of correct and error response probabilities and response time distributions during efficient and inefficient search, even when the target changes location unexpectedly.
Aim 1 will develop, refine, and extend an INTERACTIVE RACE model of saccade target selection. We will test competing model architectures consisting of multiple stochastic accumulators (GO units) that govern when and where a saccade is made, where the nature of the interactions between GO units and the potential inclusion of a STOP unit for exerting cognitive control is manipulated across model variants. Successful models predict response probabilities and response time distributions in monkeys and humans and neural activity observed previously in monkeys.
Aim 2 will test, refine, and extend a GATED ACCUMULATOR model of how visual salience is translated into a saccade command. The visual salience representation provided by FEF neurons will be the input to a neural network of stochastic GO units with alternative architectures that implement competing hypotheses about the role of feed forward, lateral and gating inhibition.
Aim 3 will integrate these two models. This integration will be guided by new data from human participants performing visual search tasks in which key variables are manipulated to obtain new measures to test competing architectures.

Public Health Relevance

The models tested and refined through this research plan will provide a firm foundation from which to understand disorders of visual attention, orientation and mobility that are consequences of impaired visual search. Elucidation of the mapping between effective mathematical models of behavior and specific brain processes is necessary for translational research seeking to understand how vision and cognition are impacted by injury, disease, or pharmacological interventions.

Agency
National Institute of Health (NIH)
Institute
National Eye Institute (NEI)
Type
Research Project (R01)
Project #
5R01EY021833-03
Application #
8536300
Study Section
Cognition and Perception Study Section (CP)
Program Officer
Steinmetz, Michael A
Project Start
2011-09-01
Project End
2014-08-31
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
3
Fiscal Year
2013
Total Cost
$222,300
Indirect Cost
$79,800
Name
Vanderbilt University Medical Center
Department
Psychology
Type
Schools of Arts and Sciences
DUNS #
004413456
City
Nashville
State
TN
Country
United States
Zip Code
37212
White, Corey N; Servant, Mathieu; Logan, Gordon D (2018) Testing the validity of conflict drift-diffusion models for use in estimating cognitive processes: A parameter-recovery study. Psychon Bull Rev 25:286-301
Bernardo-Colón, Alexandra; Vest, Victoria; Clark, Adrienne et al. (2018) Antioxidants prevent inflammation and preserve the optic projection and visual function in experimental neurotrauma. Cell Death Dis 9:1097
Risner, Michael L; Pasini, Silvia; Cooper, Melissa L et al. (2018) Axogenic mechanism enhances retinal ganglion cell excitability during early progression in glaucoma. Proc Natl Acad Sci U S A 115:E2393-E2402
Servant, Mathieu; van Wouwe, Nelleke; Wylie, Scott A et al. (2018) A model-based quantification of action control deficits in Parkinson's disease. Neuropsychologia 111:26-35
Annis, Jeffrey; Palmeri, Thomas J (2018) Bayesian statistical approaches to evaluating cognitive models. Wiley Interdiscip Rev Cogn Sci 9:
Purcell, Braden A; Palmeri, Thomas J (2017) RELATING ACCUMULATOR MODEL PARAMETERS AND NEURAL DYNAMICS. J Math Psychol 76:156-171
Annis, Jeffrey; Miller, Brent J; Palmeri, Thomas J (2017) Bayesian inference with Stan: A tutorial on adding custom distributions. Behav Res Methods 49:863-886
Palmeri, Thomas J; Love, Bradley C; Turner, Brandon M (2017) Model-based cognitive neuroscience. J Math Psychol 76:59-64
Schall, Jeffrey D; Palmeri, Thomas J; Logan, Gordon D (2017) Models of inhibitory control. Philos Trans R Soc Lond B Biol Sci 372:
Verbruggen, Frederick; Logan, Gordon D (2015) Evidence for capacity sharing when stopping. Cognition 142:81-95

Showing the most recent 10 out of 18 publications